On the Vapor Film Destabilization Mechanism during Unsteady Film Boiling
- Authors: Kanin P.K.1, Yagov V.V.1, Zabirov A.R.1,2,3, Molotova I.A.1,3, Vinogradov M.M.1, Ryazantsev V.A.1
-
Affiliations:
- National Research University Moscow Power Engineering Institute
- Joint Institute for High Temperatures, Russian Academy of Sciences
- Scientific and Technical Center for Nuclear and Radiation Safety
- Issue: Vol 61, No 2 (2023)
- Pages: 241-250
- Section: Heat and Mass Transfer and Physical Gasdynamics
- URL: https://ruspoj.com/0040-3644/article/view/653137
- DOI: https://doi.org/10.31857/S0040364423020084
- ID: 653137
Cite item
Abstract
We present new experimental data on the cooling of nickel and duralumin spheres in subcooled water and ethanol, along with a review of our comprehensive experimental investigations from 2015 to 2022. The hypothesis on the vapor film destabilization mechanism during unsteady cooling of high-temperature bodies is elucidated. Additionally, new correlations are proposed for estimating the temperature head at the cessation of film boiling in both saturated and subcooled liquids. The derived equations are validated against an extensive body of proprietary experimental data as well as data from other researchers, exhibiting strong qualitative and quantitative agreement with experimental outcomes.
About the authors
P. K. Kanin
National Research University Moscow Power Engineering Institute
Email: kaninpk@mpei.ru
111250, Moscow, Russia
V. V. Yagov
National Research University Moscow Power Engineering Institute
Email: kaninpk@mpei.ru
111250, Moscow, Russia
A. R. Zabirov
National Research University Moscow Power Engineering Institute; Joint Institute for High Temperatures, Russian Academy of Sciences; Scientific and Technical Center for Nuclear and Radiation Safety
Email: kaninpk@mpei.ru
111250, Moscow, Russia; 125412, Moscow, Russia; 107140, Moscow, Russia
I. A. Molotova
National Research University Moscow Power Engineering Institute; Scientific and Technical Center for Nuclear and Radiation Safety
Email: kaninpk@mpei.ru
111250, Moscow, Russia; 107140, Moscow, Russia
M. M. Vinogradov
National Research University Moscow Power Engineering Institute
Email: kaninpk@mpei.ru
111250, Moscow, Russia
V. A. Ryazantsev
National Research University Moscow Power Engineering Institute
Author for correspondence.
Email: kaninpk@mpei.ru
111250, Moscow, Russia
References
- Мелихов В.И., Мелихов О.И., Якуш С.Е. Термическое взаимодействие высокотемпературных расплавов с жидкостями // ТВТ. 2022. Т. 60. № 2. С. 280.
- Зейгарник Ю.А., Ивочкин Ю.П., Кубриков К.Г., Тепляков И.О. Механизмы дробления перегретых жидкометаллических капель, погруженных в холодную воду // ВАНТ. Сер. Ядерно-реакторные константы. 2018. № 5. С. 63.
- Zvirin Y., Hewitt G.R., Kenning D.B.R. Boiling on Free-Falling Spheres: Drag and Heat Transfer Coefficients // Exp. Heat Transfer. 1990. V. 3. № 3. P. 185.
- Hsu S.-H., Ho Y.-H., Wang J.-C., Pan C. On the Formation of Vapor Film During Quenching in De-ionized Water and Elimination of Film Boiling During Quenching in Natural Sea Water // Int. J. Heat Mass Transfer. 2015. V. 86. P. 65.
- Specht E. Heat and Mass Transfer in Thermoprocessing: Fundamentals, Calculations, Processes. Essen: Vulkan, 2017. 487 p.
- Kim A.K., Lee Y. A Correlation of Rewetting Temperature // Lett. Heat Mass Transfer. 1979. V. 6. № 2. P. 117.
- Shigefumi N. Prediction Technique for Minimum-Heat-Flux (MHF)-point Condition of Saturated Pool Boiling // Int. J. Heat Mass Transfer. 1987. V. 30. № 10. P. 2045.
- Berenson P.J. Film-boiling Heat Transfer from a Horizontal Surface // Int. J. Heat Mass Transfer. 1961. V. 83. № 3. P. 351.
- Henry R.E. A Correlation for the Minimum Film Boiling Temperature // AIChE Sym. Series. 1974. V. 70. № 138. P. 81.
- Segev A., Bankoff S.G. The Role of Adsorption in Determining the Minimum Film Boiling Temperature // Int. J. Heat Mass Transfer. 1980. V. 23. № 5. P. 637.
- Olek S., Zvirin Y., Elias S. The Relation between the Rewetting Temperature and the Liquid–Solid Contact An-gle // Int. J. Heat Mass Transfer. 1988. V. 31. № 4. P. 898.
- Bernardin J.D., Mudawar I. The Leidenfrost Point: Experimental Study and Assessment of Existing Models // J. Heat Transfer. 1999. V. 121. № 4. P. 894.
- Zavbirov A.R., Yagov V.V., Ryazantsev V.A., Molotova I.A., Vinogradov M.M. Decrease of Leidenfrost Temperature at Quenching in Subcooled Liquids // J. Phys. Conf. Ser. 2021. V. 2116. № 1. P. 012010.
- Ягов В.В., Забиров А.Р., Канин П.К., Денисов М.А. Теплообмен при пленочном кипении недогретой жидкости: новые опытные результаты и расчетные уравнения // ИФЖ. 2017. Т. 90. № 2. С. 287.
- Molotova I., Zabirov A., Yagov V., Vinogradov M., Kanin P., Molotov I., Antonov N. Influence of Coolant and Material Properties on Cooling High-Temperature Steel Spheres in Subcooled Ethanol–Water Mixtures // Int. J. Therm. Sci. 2022. V. 179. P. 107659.
- Дедов А.В., Забиров А.Р., Слива А.П., Федорович С.Д., Ягов В.В. Влияние углеродистого покрытия поверхности на теплообмен при нестационарном пленочном кипении // ТВТ. 2019. Т. 57. № 1. С. 72.
- Kang J.-Y., Kim T.K., Lee G.C., Kim M.H., Park H.S. Quenching of Candidate Materials for Accident Tolerant Fuel-cladding in LWRs // Ann. Nucl. Energy. 2018. V. 112. P. 794.
- Wang Z., Zhong M., Deng J., Liu Y., Huang H., Zhang Y., Xiong J. Experimental Investigation on the Transient Film Boiling Heat Transfer During Quenching of FeCrAl // Ann. Nucl. Energy. 2021. V. 150. P. 107842.
- Terrani K.A. Accident Tolerant Fuel Cladding Development: Promise, Status, and Challenges // J. Nucl. Mater. 2018. V. 501. P. 13.
- Yagov V.V., Zabirov A.R., Kanin P.K. Heat Transfer at Cooling High-Temperature Bodies in Subcooled Liquids // Int. J. Heat Mass Transfer. 2018. V. 126(A). P. 823.
- Жилин В.Г., Зейгарник Ю.А., Ивочкин Ю.П., Оксман А.А., Белов К.И. Экспериментальное исследование характеристик взрывного вскипания недогретой воды на горячей поверхности при смене режимов кипения // ТВТ. 2009. Т. 47. № 6. С. 891.
- Yagov V.V. Generic Features and Puzzles of Nucleate Boiling // Int. J. Heat Mass Transfer. 2009. V. 52. № 21–22. P. 5241.
- Капица П.Л. Волновое течение тонких слоев вязкой жидкости // ЖЭТФ. 1948. Т. 18. № 1. С. 3.
- Синкевич О.А. Паровая пленка на плоской горячей вертикальной поверхности // ТВТ. 2021. Т. 59. № 1. С. 86.
- Yagov V.V., Leksin M.A., Zabirov A.R., Denisov M.A. Film Boiling of Subcooled Liquids. Part II: Steady Regimes of Subcooled Liquids Film Boiling // Int. J. Heat Mass Transfer. 2016. V. 100. P. 918.
- Witte L.C., Lienhard J.H. On the Existence of Two “Transition” Boiling Curves // Int. J. Heat Mass Transfer. 1982. V. 25. № 6. P. 771.
- Takeuchi H., Ohtake H., Ueno M., Washida H., Hasegawa K. Boiling Heat Transfer Characteristics and Film Boiling Collapse Temperature Through the Two-dimensional Temperature Field Measurement: Examination of Condition in High Liquid Subcooling Condition // 24th Int. Conf. on Nuclear Engineering. Conf. Proc. 2016. V. 5. P. V005T15A046.
- Kikuchi Y., Takeshi E., Itaru M. Measurement of Liquid-Solid Contact in Film Boiling // Int. J. Heat Mass Transfer. 1992. V. 35. № 6. P. 1589.
- Yeom H., Jo H., Johnson G., Sridharan K., Corradini M. Transient Pool Boiling Heat Transfer of Oxidized and Roughened Zircaloy-4 Surfaces During Water Quenching // Int. J. Heat Mass Transfer. 2018. V. 120. P. 435.
- Jo H.J., Yeom H., Yoon D.S., Duarte J.P., Corradini M.L. Minimum Heat Flux (MHF) Behavior with Different Surface Characteristics Including Structured Surfaces and Different Surface Energies // Int. J. Heat Mass Transfer. 2018. V. 127(A). P. 414.
- Bradfield W.S. Solid–Liquid Contact in Stable Film Boiling // Ind. Eng. Chem. Fundamen. 1966. V. 5. № 2. P. 200.
- Baumeister K.J., Henry R.E., Simon F.F. Role of the Surface in the Measurement of the Leidenfrost Temperature // Spec. Session on Augmentation of Convective Heat and Mass Transfer of the Am. Soc. of Mech. Engr. Winter Ann. Meeting, 1970.
- Hurley P., Duarte J.P. Implementation of Fiber Optic Temperature Sensors in Quenching Heat Transfer Analysis // Appl. Therm. Eng. 2021. V. 195. P. 117257.
- Eustathopoulos N., Nicholas M.G., Drevet B. Wettability at High Temperatures. Series / Ed. Cahn R.W. Kidlington: Elsevier Sci. Ltd., 1999. 439 p.
- Fan L.W., Li J.Q., Su Y.Y., Wang H.L., Ji T., Yu Z.T. Subcooled Pool Film Boiling Heat Transfer from Spheres with Superhydrophobic Surfaces: An Experimental Study // J. Heat Transfer. 2016. V. 138. № 2. P. 021503.
- Kang J.-Y., Lee G.C., Kim M.H., Moriyama K., Park H.S. Subcooled Water Quenching on a Super-Hydrophilic Surface under Atmospheric Pressure // Int. J. Heat Mass Transfer. 2018. V. 117. P. 538.
- Павленко А.Н., Цой А.Н., Суртаев А.С., Кузнецов Д.В., Сердюков В.С. Влияние низкотеплопроводного покрытия на динамику повторного смачивания перегретой пластины стекающей пленкой жидкости // ТВТ. 2016. Т. 54. № 3. С. 393.
- Molotova I.A., Zabirov A.R., Yagov V.V., Terentyev E.V., Antonov N.N., Molotov I.M., Tumarkin A.V., Kharkov M.M. Effect of High-Temperature Oxidation on the Surface Properties as Applied to Quenching of High-Temperature Bodies // J. Phys. Conf. Ser. 2021. V. 2039. № 1. P. 012024.
- Yagov V.V., Minko K.B., Zabirov A.R. Two Distinctly Different Modes of Cooling High-Temperature Bodies in Subcooled Liquids // Int. J. Heat Mass Transfer. 2021. V. 167. P. 120838.
- Ebrahim S.A., Chang S., Cheung F.B., Bajorek S.M. Parametric Investigation of Film Boiling Heat Transfer on the Quenching of Vertical Rods in Water Pool // Appl. Therm. Eng. 2018. V. 140. P. 139.
- Freud R., Harari R., Sher E. Collapsing Criteria for Vapor Film Around Solid Spheres as a Fundamental Stage Leading to Vapor Explosion // Nucl. Eng. Des. 2009. V. 239. № 4. P. 722.
- Jouhara H., Axcell B.P. Film Boiling Heat Transfer and Vapour Film Collapse on Spheres, Cylinders and Plane Surfaces // Nucl. Eng. Des. 2009. V. 239. № 10. P. 1885.
Supplementary files
