Application of the Random Forest Algorithm of Corrosion Losses of Aluminum for the First Year of Exposure in Various Regions of the World

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Using the random forest algorithm (RF), two models are obtained for predicting first-year corrosion losses K1 of aluminum in an open atmosphere in various regions of the world. The RF1 model was obtained using the combined databases of the international programs ISO CORRAG and MICAT and tests in Russia and is intended for evaluation of K1 in different types of atmosphere in different regions of the world. The model makes it possible to predict K1 only in the continental regions of the world. For all types of atmospheres, a comparison was made of the accuracy of the prediction of K1 according to the RF1 model and the dose-response function (DRF) presented in the ISO 9223 standard. For continental sites, a comparison of the reliability of the prediction is given by the RF2 model and the dose-response functions presented in ISO 9223 and the new DRF. It is shown that the reliability of predictions for both RF models is significantly better than using dose-response functions.

作者简介

M. Gavryushina

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Moscow, Russia

Email: maleeva.marina@gmail.com
Россия, 119071, Москва

A. Marshakov

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Moscow, Russia

Email: maleeva.marina@gmail.com
Россия, 119071, Москва

Yu. Panchenko

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Moscow, Russia

编辑信件的主要联系方式.
Email: maleeva.marina@gmail.com
Россия, 119071, Москва

参考

  1. ISO 9223:2012(E). Corrosion of metals and alloys. Corrosivity of atmospheres. Classification, determination and estimation, International Standards Organization, Geneve, 2012.
  2. ISO 9224:2012(E) Corrosion of metals and alloys. Corrosivity of atmospheres. Guiding values for the corrosivity categories, 2012.
  3. Panchenko Yu.M., Marshakov A.I. // Corr. Sci. 2016. V. 109. P. 217.
  4. Abramova M.G., Panchenko Y.M., Vetrova E.Y. et al. // Prot. Met. Phys. Chem. Surf. 2021. V. 57. № 7. P. 1272–1282.
  5. Panchenko Yu.M., Marshakov A.I., Nikolaeva L.A., Igonin T.N. // Civil Eng. J. 2020. V. 6. № 8. P. 1503.
  6. Knotkova D., Boschek P., Kreislova K. In Atmospheric Corrosion, Kirk W.W. and Lawson H.H., Eds., Philadelphia, PA, USA: American Soc. Test. Mater., 1995. P. 38.
  7. Morcillo M., In Atmospheric Corrosion, Kirk W.W. and Lawson H.H., Eds., Philadelphia, PA, USA: American Soc. Test. Mater. 1995. P. 257.
  8. Tidblad J., Kucera V., Mikhailov A.A., Henriksen J., Kreislova K., Yaites T., Stöckle B., Schreiner M. // Water, Air, and Soil Pollution. 2001. V. 130. P. 1457.
  9. Панченко Ю.М., Шувахина Л.А., Михайловский Ю.Н. // Защита металлов. 1982. Т. 18. С. 575.
  10. Panchenko Yu.M., Marshakov A.I., Nikolaeva L.A., Igonin T.N. // Corr. Eng. Sci. Tech. 2020. V. 55. № 8. P. 655.
  11. Breiman L. // Machine Learning. 2001. V. 45. P. 5.
  12. Zhi Y., Fu D., Zhang D., Yang T., Li X. // Metals. 2019. V. 9. № 3. P. 383.
  13. Yan L., Diao Y., Gao K. // Materials. 2020. V. 13. № 15. P. 3266.
  14. Zhi Y., Jin Z., Lu L., Yang T., Zhou D., Pei Z., Wu D., Fu D., Zhang D., Li X. // Corrosion Science. 2021. V. 178. № 109084.
  15. Panchenko Yu.M., Marshakov A.I., Bardin I.V., Shklyaev A.V. // Prot. Metals Phys. Chem. Surf. 2019. V. 55. №. 4. P. 753.
  16. Mikhailov A.A., Tidblad J., Kucera V. // Prot. Metals. 2004. V. 40. № 6. P. 541.
  17. Tidblad J., Kucera V., Mikhailov A.A., Knotkova D. In Outdoor Atmospheric Corrosion, Townsend H.E., Eds., West Conshohocken, PA, USA: American Soc. Test. Mater., 2002, p. 73.
  18. Panchenko Yu.M., Marshakov A.I., Nikolaeva L.A., Kovtanyuk V.V. // AIMS Materials Sci. 2018. V. 5. № 4. P. 624.
  19. Scikit-learn. Machine Learning in Python // https://scikit-learn.org/stable/index.html
  20. https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

补充文件

附件文件
动作
1. JATS XML
2.

下载 (237KB)
3.

下载 (268KB)
4.

下载 (254KB)
5.

下载 (372KB)
6.

下载 (343KB)

版权所有 © М.А. Гаврюшина, А.И. Маршаков, Ю.М. Панченко, 2023