Preparation of Photoactive TiO2/LTA Zeolite Composites by Solution Technology in Hydrothermal Conditions
- Authors: Ovchinnikov N.L.1, Vinogradov N.M.1, Gordina N.E.1, Butman M.F.1
-
Affiliations:
- Ivanovo State University of Chemical Technology
- Issue: Vol 59, No 4 (2023)
- Pages: 380-386
- Section: ФИЗИКО-ХИМИЧЕСКИЕ ПРОЦЕССЫ НА МЕЖФАЗНЫХ ГРАНИЦАХ
- URL: https://ruspoj.com/0044-1856/article/view/663902
- DOI: https://doi.org/10.31857/S0044185623700481
- EDN: https://elibrary.ru/VSPNDX
- ID: 663902
Cite item
Abstract
For the first time, using solution technology in a reactor under pressure, composites of titanium oxide and LTA zeolite containing 50, 70, and 80% TiO2 were obtained. The materials were characterized by XRD, IR spectroscopy, SEM, energy-dispersive microanalysis, and low-temperature nitrogen adsorption–desorption. The adsorption and photocatalytic properties of the composites were studied using the model dye Rhodamine B as an example. The surface morphology and the textural, adsorption, and photocatalytic properties of the resulting composites, as well as the phase composition of TiO2, largely depend on the degree of coverage of the surface of the zeolite. For 80% TiO2/LTA composites, a degree of coverage close to 100% was observed, and it is for this composition, with a size of TiO2 crystallites of about 11 nm and an anatase/rutile phase ratio of about 0.54, that the highest photocatalytic activity was found.
About the authors
N. L. Ovchinnikov
Ivanovo State University of Chemical Technology
Email: butman@isuct.ru
153000, Ivanovo, Russia
N. M. Vinogradov
Ivanovo State University of Chemical Technology
Email: butman@isuct.ru
153000, Ivanovo, Russia
N. E. Gordina
Ivanovo State University of Chemical Technology
Email: butman@isuct.ru
153000, Ivanovo, Russia
M. F. Butman
Ivanovo State University of Chemical Technology
Author for correspondence.
Email: butman@isuct.ru
153000, Ivanovo, Russia
References
- Nakata K., Fujishima A. // J. Photochem. Photobiol., C. 2012. V. 13. P. 169‒189.
- Schneider J., Matsuoka M., Takeuchi M. et al. // Chem. Rev. 2014. V. 114. P. 9919.
- Dong H., Zeng G., Tang L. et al. // Water Res. 2015. V. 79. P. 128.
- Shan A.Y., Ghazi T.I.M., Rashid S.A. // Appl. Catal., A. 2010. V. 389. P. 1.
- Zhang W., Zou L., Wang L. // Appl. Catal., A. 2009. V. 371. P. 1.
- Wang B., Zhang G., Sun Z., Zheng S. // Powder Technol. 2014. V. 262. P. 1.
- Sun Z., Bai C., Zheng S. et al. // Appl. Catal., A. 2013. V. 458. P. 103.
- Bahranowski K., Gaweł A., Klimek A. et al. // Appl. Clay Sci. 2017. V. 140. P. 75.
- Tokarčíková M., Tokarský J., Čabanová K. et al. // Compos. B: Eng. 2014. V. 67. P. 262.
- Sun Z., Li C., Yao G., Zheng S. // Mater. Des. 2016. V. 94. P. 403.
- Martins A.C., Cazetta A.L., Pezoti O. et al. // Ceram. Int. 2017. V. 43. P. 4411.
- Bouarioua A., Zerdaoui M. // J. Environ. Chem. Eng. 2017. V. 5. P. 1565.
- Malakootian M., Pourshaban-Mazandarani M., Hossaini H., Ehrampoush M.H. // Process Saf. Environ. Prot. 2016. V. 104. P. 334.
- Huang J., Wang X., Hou Y. et al. // Microporous Mesoporous Mater. 2008. V. 110. P. 543.
- Hamandi M., Berhault G., Guillard C., Kochkar H. // Appl. Catal., B. 2017. V. 209. P. 203.
- Sohail M., Xue H., Jiao Q. et al. // Mater. Res. Bull. 2017. V. 90. P. 125.
- Andronic L., Duta A. // Thin Solid Films. 2007. V. 515. P. 6294.
- Kochkina N.E., Agafonov A.A., Vinogradov A.V. et al. // ACS Sustain. Chem. Eng. 2017. V. 5. P. 5148.
- Butman M.F., Ovchinnikov N.L., Zinenko N.V. et al. // Catalysts. 2020. V. 10. P. 541.
- Butman M.F., Kochkina N.E., Ovchinnikov N.L., Krämer K.W. // Molecules. 2021. V. 26(11). P. 3399.
- Butman M.F., Ovchinnikov N.L., Karasev N.S. et al. // Beilstein J. Nanotechnol. 2018. V. 9. P. 364.
- Butman M.F., Gushchin A.A., Ovchinnikov N.L. et al. // Catalysts. 2020. V. 10. P. 359.
- Zhang G., Song A., Duan Y., Zheng S. // Microporous Mesoporous. Mater. 2018. V. 255. P. 61.
- Takeuchi M., Hidaka M., Anpo M. // J. Hazard. Mater. 2012. V. 237–238. P. 133.
- Liu S., Lim M., Amal R. // Chem. Eng. Sci. 2014. V. 105. P. 46.
- Guesh K., Mayoral Á., Márquez-Álvarez C. et al. // Microporous Mesoporous Mater. 2016. V. 225. P. 88.
- Jansson I., Suárez S., Garcia-Garcia F.J., Sánchez B. // Appl. Catal., B. 2015. V. 178. P. 100.
- Sun Q., Hu X., Zheng S. et al. // Powder Technol. 2015. V. 274. P. 88.
- Gomez S., Marchena C.L., Pizzio L., Pierella L. // J. Hazard Mater. 2013. V. 258–259. P. 19.
- Shankar M.V., Anandan S., Venkatachalam N. et al. // Chemosphere. 2006. V. 63(6). P. 1014.
- Tehubijuluw H., Subagyo R., Yulita M.F. et al. // Environ. Sci. Pollut. Res. 2021. V. 28. P. 37354.
- Kamegawa T., Kido R., Yamahana D., Yamashita H. // Microporous and Mesoporous Mater. 2013. V. 165. P. 142.
- Liu X., Liu Y., Lu S. et al. // Chem. Eng. J. 2018. V. 350. P. 131.
- Al-Harbi L.M., Kosa S.A., Abd El Maksod I.H., Hegazy E.Z. // J. Nanomater. 2015. V. 2015. Article ID 565849.
- Lv Z., Tao Y., Zhang W. // Mech. and Catal. 2021. V. 133. P. 531.
- Rahman A., Nurjayadi M., Wartilah R. et al. // Int. J. Technol. 2018. V. 6. P. 1159.
- Li F., Jiang Y., Yu L. et al. // Appl. Surf. Sci. 2005. V. 252. P. 1410.
- Chen H., Matsumoto A., Nishimiya N., Tsutsumi K. // Colloids Surf. A: Physicochem. Eng. Asp. 1999. V. 157. P. 295.
- Kuwahara Y., Aoyama J., Miyakubo K. et al. // J. Catal. 2012. V. 285. P. 223.
- Fukugaichi S., Henmi T., Matsue N. // Catal. Lett. 2013. V. 143. P. 1255.
- Li Y., Li S.G., Wang J. et al. // Russ. J. Phys. Chem. A. 2014. V. 88. P. 2471.
- Diban N., Pacuła A., Kumakiri I. et al. // Catalysts. 2021. V. 11. P. 1367.
- Zheng H., Shi J., Hu B.Z. et al. // Key Eng. Mater. 2007. V. 334–335. P. 1029.
- Alakhras F., Alhajri E., Haounati R. et al. // Surf. Interfaces. 2020. V. 20. P. 100611.
- Nagarjuna R., Roy S., Ganesan R. // Microporous and Mesoporous Mater. 2015. V. 211. P. 1.
- Badvi K., Javanbakht V. // J. Clean. Prod. 2021. V. 280. P. 124518.
- Subagyo R., Tehubijuluw H., Utomo W.P. et al. // Arab. J. Chem. 2022. V. 15. P. 103754.
- Znad H, Abbas K., Hena S., Awual Md.R. // J. Environ. Chem. Eng. 2018. V. 6. P. 218.
- Mahalakshmi M., Vishnu Priya S., Arabindoo B. et al. // J. Hazard. Mater. 2009. V. 161(1). P. 336.
- Rathi A., Barman S., Basu S., Arya R.K. // Chemosphere. 2022. V. 288. P. 132609.
- Baerlocher Ch., McCusker L.B., Olson D.H. Atlas of Zeolite Framework Types, 6th ed. / Elsevier Science: Amsterdam, 2007. P. 404.
- Гордина Н.Е., Прокофьев В.Ю., Борисова Т.Н., Елизарова А.М. // Изв. вузов. Химия и хим. технология. 2019. Т. 62. Вып. 7. С. 99.
- Bernier A.; Admaiai L.F., Grange P. // Appl. Catal. 1991. V. 77. P. 269.
- García-Soto A.R., Rodríguez-Niño G., Trujillo C.A. // Ing. e Investig. 2013. V. 33. P. 22.
- Moma J., Baloyi J. Modified Titanium Dioxide for Photocatalytic Applications. In: Khan, S.B., Akhtar, K., editors. Photocatalysts – Applications and Attributes [Internet]. London: IntechOpen; 2018 [cited 2022 Jun 20]. Available from: https://www.intechopen.com/chapters/62303 https://doi.org/10.5772/intechopen.79374
- da Silva Filho S.H., Vinaches P., Silva H.L.G. et al. // SN Appl. Sci. 2020. V. 2. P. 344.
- Bouzakher-Ghomrasni N., Tache O., Leroy J. et al. Dimensional measurement of TiO_2 (Nano) particles by SAXS and SEM in powder form. Talanta, Elsevier, 2021. In press, 234, P.122619.
Supplementary files
