Explosives detection: comparison of analytical and performance characteristics of mass spectrometers and ion mobility spectrometers

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The main analytical and operational characteristics of stationary (laboratory), portable (handheld) mass spectrometers, as well as ion mobility spectrometers for detection of traces and vapors of explosives are compared. The limit of detection, time of readings establishment (fast performance), range (linear) of detectable substance content in samples, resolution, cost of the mentioned devices are considered. The requirements for performance and reliability of detection, maintenance, qualification of operating and service personnel are discussed. Promising directions of further improvement of these devices are listed.

Full Text

Restricted Access

About the authors

T. I. Buryakov

FSUE “Alexandrov NITI”

Author for correspondence.
Email: buryakovti@gmail.com
Russian Federation, Leningrad region, Sosnovy Bor, 188540

I. A. Buryakov

Сосновый Бор, 188540

Email: buryakovia@gmail.com
Russian Federation, FSUE “Alexandrov NITI” Leningrad region, Sosnovy Bor, 188540

References

  1. Twibell J.D., Home J.M., Smalldon K.W., Higgs D.G. Transfer of nitroglycerine to hands during contact with commercial explosives // J. Forensic Sci. 1982. V. 27. № 4. P. 783.
  2. Twibell J.D., Turner S.L., Smalldon K.W., Higgs D.G. The persistence of military explosives on hands // J. Forensic Sci. 1984. V. 29. № 1. P. 284.
  3. Fetterolf D.D. Antibody-based field test kits for explosives / Advances in Analysis and Detection of Explosives / Ed. Yinon J. Kluwer Academic Publishers, 1993. P. 19.
  4. Mostak P., Stancl M. Detection of Semtex plastic explosives / Detection of Explosives and Landmines / Eds. H. Schubert, A. Kuznetsov. Kluwer Academic Publishers, 2002. P. 93.
  5. Ong T.-H., Mendum T., Geurtsen G., Kelley J., Ostrinskaya A., Kunz R. Use of mass spectrometric vapor analysis to improve canine explosive detection efficiency // Anal. Chem. 2017. V. 89. № 12. P. 6482.
  6. ГОСТ Р 52361-2018. Контроль объекта аналитический. Термины и определения. М.: Стандартинформ, 2018. 12 с.
  7. Currie L.A. Nomenclature in evaluation of analytical methods, including detection and quantification capabilities (IUPAC Recommendations 1995) // Pure Appl. Chem. 1995. V. 67. № 10. P. 1699.
  8. Vessman J., Stefan R.I., van Staden J.F., Danzer K., Lindner W., Burns D.T., Fajgelj A., Muller H. Selectivity in analytical chemistry (IUPAC Recommendations 2001) // Pure Appl. Chem. 2001. V. 73. № 8. P. 1381.
  9. Рекомендации по межгосударственной стандартизации: РМГ-29-2013. Метрология. Основные термины и определения. М.: Стандартинформ, 2014. 56 с.
  10. Thomson B.A., Davidson W.R., Lovett A.M. Applications of a versatile technique for trace analysis: Atmospheric pressure negative chemical ionization // Environ Health Perspect. 1980. V. 36. P. 77.
  11. Reid N.M., Buckley J.A., French J.B. the real-time detection of trinitrotoluene (TNT) in ambient air using the TAGA system / UTIAS Technical Note No. 213. The University of Toronto, 1977. 13 p.
  12. Tanner S.D., Davidson W.R., Fulford J.E. The instantaneous detection of explosives by tandem mass spectrometry / Proc. Int. Symp. on the Analysis and Detection of Explosives. Quantico: FBI Academy, 1983. P. 409.
  13. Stott W.R., Davidson W.R. Sleeman R. High specificity chemical detection of explosives by tandem mass spectrometry // Proc. SPIE. 1992. V. 1824. P. 68.
  14. Davidson W.R., Scott W.R. The role mass spectrometry in the detection of explosives / Proc. First Int. Symp. Explosive Detection Technology / Ed. S.M. Khan. Atlantic City, U.S. Department of TFAA, 1992. P. 663.
  15. Spangler G.E., Carrico J.P., Campbell D.N. Recent advances in ion mobility spectrometry for explosives vapor detection // J. Test. Eval. 1985. V. 13. № 3. P. 234.
  16. Nyden M.R. A Technical Assessment of Portable Explosives Vapor Detection Devices. Gaithersburg: National Institute of Justice, 1990. 16 p.
  17. Буряков И.А. История спектрометрии приращения ионной подвижности // Журн. аналит. химии. 2018. Т. 73. № 12. С. 941.
  18. Shvartsburg A.A. Ion mobility spectrometry (IMS) and mass spectrometry (MS) / Encyclopedia of Spectroscopy and Spectrometry. 3rd Ed. Elsevier, 2017. P. 321.
  19. Буряков И.А., Буряков Т.И. Экспресс-технологии обнаружения взрывчатых веществ. СПб: ООО “Грейт принт”, 2023. С. 391.
  20. McLuckey S.A., Glish G.L., Grant B.C. Explosives detection with an ion trap mass spectrometry / Proc. 3rd Symp. Analysis and Detection of Explosives. Fraunhofer-Institut für Chemische Technologie, 1989. Article 25. 18 p.
  21. McLuckey S.A., Goeringer D.E., Asano K.G., Hart K.J. Glish G.L., Grant B.C., Clambers D.M. Atmospheric Sampling Glow Discharge Ionization and Triple Quadrupole Tandem Mass Spectrometry for Explosives Vapor Detection. Oak Ridge National Laboratory, 1993. 166 p.
  22. Opportunities to Improve Airport Passenger Screening with Mass Spectrometry Committee on Assessment of Security Technologies for Transportation, National Research Council. The National Academies Press, 2004. 41 p. https://nap.nationalacademies.org/catalog/10996/opportunities-to-improve-airport-passenger-screening-with-mass-spectrometry (дата обращения 19.10.2023).
  23. Eiceman G.A., Schmidt H. Advances in ion mobility spectrometry of explosives / Aspects of explosives detection / Eds. Marshall M., Oxley J.C. Elsevier, 2009. P. 171.
  24. Crawford C.L., Hill H.H.Jr. Evaluation of false positive responses by mass spectrometry and ion mobility spectrometry for the detection of trace explosives in complex samples // Anal. Chim. Acta. 2013. V. 17. P. 36.
  25. Capital Investment Plan. FY 2024 – FY 2028. Fiscal Year 2023 Report to Congress / U.S. Department of Homeland Security. Transportation Security Administration. August 23, 2023. P. 45. https://www.tsa.gov/sites/default/files/tsa-capital-investment-plan-fy-2024-2028.pdf (дата обращения 19.10.2023).
  26. Sleeman R., Richards S.L., Burton I.F.A., Luke J.G., Stott W.R., Davidson W.R. Detection of explosives residues on aircraft boarding passes / Vapour and Trace Detection of Explosives for Anti-Terrorism Purposes / Eds. Krausa M., Reznev A.A. NATO Science Series, Kluwer Academic Publishers, 2004. V. 167. P. 133.
  27. Syage J., Hanold K.A. Mass spectrometry for security screening of explosives / Trace Chemical Sensing of Explosives / Ed. R.L. Woodfin. John Wiley & Sons, Inc., 2007. P. 219.
  28. Vilkov A., Jorabchi K., Hanold K., Syage J. A. A mass spectrometer based explosives trace detector // Proc. of SPIE. 2011. V. 8018. Article 80181G.
  29. Song L., Wellman A. D., Yao H., Bartmess J. E. Negative ion-atmospheric pressure photoionization: Electron capture, dissociative electron capture, proton transfer, and anion attachment // J. Am. Soc. Mass Spectrom. 2007. V. 18. P. 1789.
  30. Garcia-Reyes J.F., Harper J.D., Salazar G.A., Charipar N.A., Ouyang Z., Cooks R.G. Detection of explosives and related compounds by low-temperature plasma ambient ionization mass spectrometry // Anal. Chem. 2011. V. 83. P. 1084.
  31. Chen W., Hou K., Xiong X., Jiang Y., Zhao W., Hua L. et al. Non-contact halogen lamp heating assisted LTP ionization miniature rectilinear ion trap: A platform for rapid, on-site explosives analysis // Analyst. 2013. V. 138. № 17. P. 5068.
  32. Chen W., Hou K., Hua L., Xiong X., Li H. Water-assisted low temperature plasma ionization source for sensitive detection of explosives // RSC Adv. 2014. V. 4. № 28. P. 14791.
  33. Li L., Zhang T., Wang D., Zhang Y., He X., Wang X., Li P. Portable digital linear ion trap mass spectrometer based on separate-region corona discharge ionization source for on-site rapid detection of illegal drugs // Molecules. 2022. V. 27. Article 3506.
  34. Li L., Zhang T., Ge W., He X., Zhang Y., Wang X., Li P. Detection of trace explosives using a novel sample introduction and ionization method // Molecules. 2022. V. 27. Article 4551.
  35. Dalgleish J.K., Hou K., Ouyang Z., Cooks R.G. In situ explosive detection using a miniature plasma ion source and a portable mass spectrometer // Anal. Lett. 2012. V. 45. P. 1440.
  36. Blakeman K.H., Miller S.E. Development of high-pressure mass spectrometry for handheld and benchtop analyzers / Portable Spectroscopy and Spectrometry 1 / Eds. R.A. Crocombe, P.E. Leary, B.W. Kammrath, H.C. Lee. John Wiley & Sons Ltd, 2021. P. 391.
  37. Joshi-Kumar M. Headspace analysis of smokeless powders: Development of mass calibration methods using microdrop printing for chromatographic and ion mobility spectrometric detection. Dis. … PhD. Miami: Florida International University, 2010. 208 p.
  38. Инструкция по эксплуатации IONSCAN® 500DT, Relis “C”, ноябрь 2005. Модель 6817558 RU. https://www.smithsdetection.com/ru/manual-ionscan-500dt.pdf (дата обращения 18.04.2018).
  39. Описание IONSCAN® 500DT. https://bezar.ru/poisk-vv-i-narkotikov/obnaruzhenie-vzryvchatyh-veshchestv?product_id=623 (дата обращения 11.03.2024).
  40. Zalewska A., Pawłowski W., Tomaszewski W. Limits of detection of explosives as determined with IMS and field asymmetric IMS vapour detectors // Forensic Sci. Int. 2013. V. 226. P. 168.
  41. Буряков Т.И., Буряков И.А. Обнаружение следовых количеств взрывчатых веществ в присутствии молочной кислоты методом спектрометрии ионной подвижности // Журн. аналит. химии. 2022. Т. 77. №1. С. 28. (Buryakov T.I., Buryakov I.A. Detection of trace amounts of explosives in the presence of lactic acid by ion mobility spectrometry // J. Anal. Chem. 2022. V. 77. № 1. P. 43.)
  42. Буряков Т.И., Буряков И.А. Обнаружение следовых количеств пероксидов и нитрата аммония в отпечатках пальца методом спектрометрии ионной подвижности // Журн. аналит. химии. 2024. Т. 79. № 7. С. 772. (Buryakov T.I., Buryakov I.A. Detecting trace amounts of peroxides and ammonium nitrate in fingerprints by ion mobility spectrometry // J. Anal. Chem. 2024. V. 79. № 7. P. 982.)
  43. Kada J., Decker K. Explosives Trace Detectors (ETDs). Market Survey Report / NUSTL. New York, 2021. P. 34. https://www.dhs.gov/sites/default/files/2021-11/SAVER_Explosives%20Trace%20Detectors%20MSR_08Nov2021_Final-508.pdf (дата обращения 27.12.2023).
  44. Takada Y., Nagano H., Suzuki Y., Sugiyama M., Nakajima E., Hashimoto Y., Sakairi M. High-throughput walkthrough detection portal for counter terrorism: detection of triacetone triperoxide (TATP) vapor by atmospheric-pressure chemical ionization ion trap mass spectrometry // Rapid Commun. Mass Spectrom. 2011. V. 25. P. 2448.
  45. Takada Y., Nagano H., Kawaguchi Y., Suzuki Y., Nakajima E., Sugiyama M. et al. Evaluation of false alarm rates of a walkthrough detection portal designed for detecting triacetone triperoxide (TATP) vapour from field test results and receiver operating characteristic (ROC) curves // Int. J. Saf. Sec. Eng. 2012. V. 2. № 3. P. 256.
  46. Takada Y., Suzuki Y., Nagano H., Sugiyama M., Nakajima E., Sugaya M. et al. High-throughput walkthrough detection portal as a measure for counter terrorism: Design of a vapor sampler for detecting triacetone triperoxide vapor by atmospheric-pressure chemical-ionization ion-trap mass spectrometry // IEEE Sens. J. 2012. V. 12. № 6. P. 1673.
  47. Takada Y., Nagano H., Kawaguchi Y., Kashima H., Sugaya M., Terada K. et al. Automated trace-explosives detection for passenger and baggage screening // IEEE Sens. J. 2016. V. 16. № 5. P. 1119.
  48. Hashimoto Y. Development of a miniature mass spectrometer and an automated detector for sampling explosive materials // Mass Spectrom. (Tokyo). 2017. V. 6. Article A0054.
  49. TRACER 1000 MS-ETDTM. General specifications. https://www.cbrnetechindex.com/Print/7560/1st-detect/tracer-1000-ms-etdtm (дата обращения 18.10.2023).
  50. Astrotech Introduces the “Gold Standard” of Mass Spectrometry into Narcotics Detection Market with its State-of-the-Art Tracer 1000. https://finance.yahoo.com/news/ astrotech-introduces-gold-standard-mass-130000247.html (дата обращения 23.05.2024).
  51. st Detect Secures Significant Purchase Order for Additional Checkpoint Security Units. https://www.astrotechcorp.com/2023-11-13-press-release (дата обращения 23.05.2024).
  52. Talaty N., Mulligan C.C., Justes D.R., Jackson A.U., Noll R.J., Cooks R.G. Fabric analysis by ambient mass spectrometry for explosives and drugs // Analyst. 2008. V. 133. P. 1532.
  53. Tian C.Y., Yin J.W., Zhao Z.J., Zhang Y., Duan Y.X. Rapid identification and desorption mechanisms of nitrogen-based explosives by ambient micro-fabricated glow discharge plasma desorption/ ionization (MFGDP) mass spectrometry // Talanta. 2017. V. 167. P. 75.
  54. Sanders N.L., Kothari S., Huang G., Salazar G., Cooks R.G. Detection of explosives as negative ions directly from surfaces using a miniature mass spectrometer // Anal. Chem. 2010. V. 82. P. 5313.
  55. Martinez-Lozano P., Rus J., Fernández de la Mora G., Hernández M., Fernández de la Mora J. Secondary electrospray ionization (SESI) of ambient vapors for explosive detection at concentrations below parts per trillion // J. Am. Soc. Mass Spectrom. 2009. V. 20. P. 287.
  56. Ewing R.G., Clowers B.H., Atkinson D. A. Direct real-time detection of vapors from explosive compounds // Anal. Chem. 2013. V. 85. № 22. P. 10977.
  57. Sun W., Liang M., Li Z., Shu J., Yang B., Xu C., Zou Y. Ultrasensitive detection of explosives and chemical warfare agents by low-pressure photoionization mass spectrometry // Talanta. 2016. V. 156–157. P. 191.
  58. Sun W.Q., Shu J.N., Zhang P., Li Z., Li N., Liang M., Yang B. Real-time monitoring of trace-level VOCs by an ultrasensitive lamp-based VUV photoionization mass spectrometer // Atmos. Meas. Tech. 2015. V. 8. P. 4637.
  59. Giannoukos S., Brkić B., Taylor S., France N. membrane inlet mass spectrometry for homeland security and forensic applications // J. Am. Soc. Mass Spectrom. 2015. V. 26. P. 231.
  60. Giannoukos S. Portable mass spectrometry for artificial sniffing. Dis. … PhD. Liverpool: The University of Liverpool, 2015. 165 p.
  61. Cohen M.J., Wernlund R.F., Stimac R.M. The ion mobility spectrometer for high explosive vapor detection // Nucl. Mater. Manag. 1984. V. 13. P. 220.
  62. Ewing R.G., Atkinson D.A., Eiceman G.A., Ewing G.J. A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds // Talanta. 2001. V. 54. P. 515.
  63. Buryakov I.A. Detection of explosive vapours in ambient air by ion nonlinear drift spectrometry method / Detection of explosives and landmines / Eds. H. Schubert, A. Kuznetsov. NATO Science Series, 2002. V. 66. P. 69.
  64. Детектор паров взрывчатых веществ “МО-2М”. Краткое техническое описание. http://www.sibel.info/ru/explosives-detectors/mo-2m.html (дата обращения 23.06.2020).
  65. Портативный детектор паров взрывчатых веществ “Пилот-М”. Техническое описание. http://www.lavanda-u.ru/katalog/explosive-detector/10-pilot-m1-premium.html (дата обращения 23.06.2020).
  66. Crawford C.L. Improving ion mobility mass spectrometry for national security threat detection. Dis. … PhD. Washington State University, 2012. 261 p.
  67. McLuckey S.A., Glish G.L., Asano K.G., Grant B.C. Atmospheric sampling glow discharge ionization source for the determination of trace organic compounds in ambient air // Anal. Chem. 1988. V. 60. № 20. P. 2220.
  68. Buryakov I.A. The analytical characteristics of ion mobility increment spectrometer during the detection of explosive vapours and products of their degradation / Vapour and Trace Detection of Explosives for Anti-Terrorism Purposes / Eds. M. Krausa, A.A. Reznev. NATO Science Series. Kluwer Academic Publishers, 2004. V. 167. P. 113.
  69. Gao L., Sugiarto, A., Harper, J.D., Cooks, R.G., Zheng, O.Y. Design and characterization of a multisource hand-held tandem mass spectrometer // Anal. Chem. 2008. V. 80. P. 7198.
  70. Ионно-дрейфовый детектор “Кербер-Т”. http://www.analizator.ru/production/ims/kerber-t/ (дата обращения 23.06.2020).
  71. API 5000™ LC/MS/MS System. https://www.ietltd.com/pdf_datasheets/API%205000 %20Data%20Sheet.pdf (дата обращения 22.01.2024).
  72. Finnigan LTQ. System Specifications. https://www.etsu.edu/com/msc/documents/ltq_data_sheet.pdf (дата обращения 22.01.2024).
  73. Детектор Системс. Антитеррористическое оборудование. https://detsys.ru/catalog/obnaruzhiteli-vzryvchatyh-veshhestv/kerber_t/ (дата обращения 24.01.2024).
  74. Лаванда-Ю. Каталог продукции. https://www.lavanda-u.ru/katalog/explosive-detector/8-pilot-m.html (дата обращения 24.01.2024).
  75. Масс-спектрометр времяпролетный с матричной лазерной ионизацией (MALDI-TOFMS) CMI-1600. https://www.dia-m.ru/catalog/lab/mass-spektrometry/ (дата обращения 24.01.2024).
  76. Bruschini C. Commercial Systems for the Direct Detection of Explosives (for Explosive Ordnance Disposal Tasks). Global CWD Repository, 2001. 68 p. https://commons.lib.jmu.edu/cisr-globalcwd/1298 (дата обращения 17.11.2023).
  77. Burns D., Mathias S., McCullough B.J., Hopley C.J., Douce D., Lumley N. et al. Ambient onization mass spectrometry for the trace detection of explosives using a portable mass spectrometer // Int. J. Mass Spectrom. 2022. V. 471. Article 116735.
  78. Wang W., Li H., Huang W., Chen C., Xu C., Ruan H. et al. Recent development and trends in the detection of peroxide-based explosives // Talanta. 2023. V. 264. Article 124763.
  79. Peng L., Hua L., Wang W., Zhou Q., Li H. On-site rapid detection of trace non-volatile inorganic explosives by stand-alone ion mobility spectrometry via acid-enhanced evaporization // Sci. Rep. 2014. V. 4. Article 06631.
  80. Bi L., Habib A., Chen L., Xu T., Wen L. Ultra-trace level detection of nonvolatile compounds studied by ultrasonic cutter blade coupled with dielectric barrier discharge ionization-mass spectrometry // Talanta. 2021. V. 222. Article 121673.
  81. Gao Y., Chu F., Chen W., Wang X., Pan Y. Arc-induced nitrate reagent ion for analysis of trace explosives on surfaces using atmospheric pressure Arc desorption/ionization mass spectrometry // Anal. Chem. 2022. V. 94. P. 5463.
  82. Лебедев А.Т. Масс-спектрометрия с ионизацией на воздухе // Успехи химии. 2015. Т. 84. № 7. С. 665. (Lebedev A.T. Ambient ionization mass spectrometry // Russ. Chem. Rev. 2015. V. 84. P. 665.)
  83. Gross J.H. Ambient desorption/ionization / Mass Spectrometry / Ed. J.H. Gross. Springer International Publishing AG, 2017. P. 779.
  84. Forbes T.P., Sisco E. Recent advances in ambient mass spectrometry of trace explosives // Analyst. 2018. V. 143. № 9. P. 1948.
  85. Fedick P.W., Fatigante W.L., Lawton Z.E., O’Leary A.E., Hall S.E., Bain R.M. et al. A low-cost, simplified platform of interchangeable, ambient ionization sources for rapid, forensic evidence screening on portable mass spectrometric instrumentation // Instruments. 2018. V. 2. № 2. Article 5.
  86. Habib A., Bi L., Hong H., Wen L. Challenges and strategies of chemical analysis of drugs of abuse and explosives by mass spectrometry // Front. Chem. 2021. V. 8. Article 598487.
  87. Wang J., Pursell M.E., DeVor A., Awoyemi O., Valentine S.J, Li P. Portable mass spectrometry system: Instrumentation, applications, and path to ‘omics analysis // Proteomics. 2022. V. 22. № 23-24. Article 2200112.
  88. Mathias S., Amerio-Cox M., Jackson T., Douce D., Sage A., Luke P. et al. Selectivity of explosives analysis with ambient ionization single quadrupole mass spectrometry: Implications for trace detection // J. Am. Soc. Mass Spectrom. 2024. V. 35. P. 50.
  89. Szyposzyńska M., Spławska A., Ceremuga M., Kot P., Maziejuk M. Stationary explosive trace detection system using differential ion mobility spectrometry (DMS) // Sensors. 2023. V. 23. Article 8586.
  90. Schaefer C., Lippmann M., Beukers M., Beijer N., van de Kamp B., Knotter J., Zimmermann S. Detection of triacetone triperoxide by high kinetic energy ion mobility spectrometry // Anal. Chem. 2023. V. 95. № 46. P. 17099.
  91. Tian Y., Higgs J., Li A., Barney B., Austin D.E. How far can ion trap miniaturization go? Parameter scaling and space-charge limits for very small cylindrical ion traps // J. Mass Spectrom. 2014. V. 49. P. 233.
  92. Snyder D.T., Pulliam C.J., Ouyang Z., Cooks R.G. Miniature and fieldable mass spectrometers: Recent advances // Anal. Chem. 2016. V. 88. P. 2.
  93. Zhang X., Zhang H., Yu K., Liu Y., He J., Jiang J. Miniaturization of cylindrical ion trap mass analyzers // Int. J. Mass Spectrom. 2020. V. 455. Article 116376.
  94. Amo-González M., Pérez S., Delgado R., Arranz G., Carnicero I. Tandem ion mobility spectrometry for the detection of traces of explosives in cargo at concentrations of parts per quadrillion // Anal. Chem. 2019. V. 91. № 21. P. 14009.
  95. Chiluwal U., Lee G., Rajapakse M.Y., Willy T., Lukow S., Schmidt H., Eiceman G.A. Tandem ion mobility spectrometry at ambient pressure and field decomposition of mobility selected ions of explosives and interferences // Analyst. 2019. V. 144. № 6. P. 2052.
  96. Jurado-Campos N., Chiluwal U., Eiceman G.A. Improved selectivity for the determination of trinitrotoluene through reactive stage tandem ion mobility spectrometry and a quantitative measure of source-based suppression of ionization // Talanta. 2021. V. 226. Article 121944.
  97. Eiceman G.A., Lee G., Menlyadiev M., Fowler P.E., Pasupuleti D., Holopainen S. et al. Tandem mobility spectrometry at ambient pressure / Comprehensive Analytical Chemistry / Eds. W.A. Donald, J.S. Prell. Elsevier, 2019. V. 83. P. 23.
  98. Eldrid C., Thalassinos K. Developments in tandem ion mobility mass spectrometry // Biochem. Soc. Trans. 2020. V. 48. P. 2457.
  99. Hagan N., Goldberg I., Graichen A., Jean A. St., Wu C., Lawrence D., Demirev P. Ion mobility spectrometry – High resolution LTQ-orbitrap mass spectrometry for analysis of homemade explosives // J. Am. Soc. Mass Spectrom. 2017. V. 28. P. 1531.
  100. Rorrer L.C. III, Yos R.A. Solvent vapor effects on planar high-field asymmetric waveform ion mobility spectrometry // Int. J. Mass Spectrom. 2011. V. 300. P. 173.
  101. Rorrer L.C. III, Yost R.A. Solvent vapor effects in planar high-field asymmetric waveform ion mobility spectrometry: Solvent trends and temperature effects // Int. J. Mass Spectrom. 2015. V. 378. P. 336.
  102. Costa C., van Es E.M., Sears P., Bunch J., Palitsin V., Cooper H., Bailey M.J. Exploring a route to a selective and sensitive portable system for explosive detection – Swab spray ionization coupled to of high-field assisted waveform ion mobility spectrometry (FAIMS) // Forensic Sci. Int.: Synergy. 2019. V. 1. P. 214.
  103. McCulloch R.D., Amo‐González M. Rapid detection of explosive vapors by thermal desorption atmospheric pressure photoionization differential mobility analysis tandem mass spectrometry // Rapid Commun. Mass Spectrom. 2019. V. 33. P. 1455.
  104. Syms R.R.A. The development of MEMS mass spectrometers / IEEE Transducers 2013. Th3B.001, 2013. P. 2749.
  105. Syms R.R.A., Wright S. MEMS mass spectrometers: The next wave of miniaturization // J. Micromech. Microeng. 2016. V. 26. № 2. Article 023001.
  106. Cheng Y., Liu Y., Hu J., Li S., Shao L., Wu Z., Chen C. Recent advances in MEMS mass spectrometers // Chinese J. Anal. Chem. 2022. V. 50. № 1. P. 60.
  107. Miller R.A., Nazarov E.G., Eiceman G.A., King A.T. A MEMS radio-frequency ion mobility spectrometer for chemical vapor detection // Sens. Actuators A. 2001. V. 91. P. 301.
  108. Zrodnikov Y., Rajapakse M.Y., Peirano D.J., Aksenov A.A., Kenyon N.J., Davis C.E. High asymmetric longitudinal field ion mobility spectrometry device for low power mobile chemical separation and detection // Anal. Chem. 2019. V. 91. P. 5523.
  109. Smith B.L., Boisdon C., Young I.S., Praneenararat T., Vilaivan T., Maher S. Flexible drift tube for high resolution ion mobility spectrometry (Flex-DT-IMS) // Anal. Chem. 2020. V. 92. № 13. P. 9104.
  110. Pau S., Pai C.S., Low Y.L., Moxom J., Reilly P.T.A., Whitten W.B., Ramsey J.M. Microfabricated quadrupole ion trap for mass spectrometer applications // Phys. Rev. Lett. 2006. V. 96. Article 120801.
  111. Chaudhary A., van Amerom F. H. W., Short R. T. Development of microfabricated cylindrical ion trap mass spectrometer arrays // J. Microelectromech. Syst. 2009. V. 18. № 2. P. 442.
  112. Fox J., Saini R., Tsui K., Verbeck G. Microelectromechanical system assembled ion optics: An advance to miniaturization and assembly of electron and ion optics // Rev. Sci. Instrum. 2009. V. 80. Article 093302.
  113. Malcolm A., Wright S., Syms R.R.A., Dash N., Schwab M., Finlay A. Miniature mass spectrometer systems based on a microengineered quadrupole filter // Anal. Chem. 2010. V. 82. P. 1751.
  114. Wright S., Malcolm A., Wright C., O’Prey S., Crichton E., Dash N. et al. A Microelectromechanical systems-enabled, miniature triple quadrupole mass spectrometer // Anal. Chem. 2015. V. 87. P. 3115.
  115. Wapelhorst E., Hauschild J., Müller J. Complex MEMS: A fully integrated TOF micro mass spectrometer // Sens. Actuators A. 2007. V. 138. P. 22.
  116. Vigne S., Alava T., Videlier H., Mahieu R., Tassetti C., Duraffourg L., Progent F. Gas analysis using a MEMS linear time-of-flight mass spectrometer // Int. J. Mass Spectrom. 2017. V. 422. P. 170.
  117. Grzebyk T., Szmajda T., Szyszka P., Gorecka-Drzazga A., Dziuban J. Glow-discharge ion source for MEMS mass spectrometer // Vacuum. 2020. V. 171. Article 109008.
  118. Baird Z. Wei P. Cooks R.G. Ion creation, ion focusing, ion/molecule reactions, ion separation, and ion detection in the open air in a small plastic device // Analyst. 2015. V. 140. P. 696.
  119. Salentijn G.I., Permentier H.P., Verpoorte E. 3D-printed paper spray ionization cartridge with fast wetting and continuous solvent supply features // Anal. Chem. 2014. V. 86. P. 11657.
  120. Hollerbach A., Baird Z., Cooks R.G. Ion separation in air using a three-dimensional printed ion mobility spectrometer // Anal. Chem. 2017. V. 89. P. 5058.
  121. Brown H.M., McDaniel T.J., West C.P., Bondzie E.H., Aldeman M.R., Molnar B.T. et al. Characterization and optimization of a rapid, automated 3D-printed cone spray ionization-mass spectrometry (3D-PCSI-MS) methodology // Int. J. Mass Spectrom. 2022. V. 474. Article 116781.
  122. Szyszka P., Jendryka J., Białas M., Grzebyk T. Towards 3D printed compact Quadrupole mass spectrometer with MEMS components / Proc. IEEE 20th Int. Conf. on Micro- and Nanotechnology for Power Generation and Energy Conversion Applications. 2021. P. 144.
  123. Eckhoff C.C., Lubinsky N.K., Metzler L.J., Pedder R.E., Velásquez-García L.F. Low-cost, compact quadrupole mass filters with unity mass resolution via ceramic resin vat photopolymerization // Adv. Sci. 2023. Article 2307665.
  124. Chen L.-Y., Velásquez-García L.F., Wang X., Teo K., Akinwande A.I. A micro ionizer for portable mass spectrometers using double-gated isolated vertically aligned carbon nanofiber arrays / IEEE International Electron Devices Meeting. 2007. P. 843.
  125. Natarajan S., Parker C.B., Piascik J.R., Gilchrist K.H., Stoner B.R., Glass J.T. Analysis of 3-panel and 4-panel microscale ionization sources // J. Appl. Phys. 2010. V. 107. Article 124508.
  126. Evans-Nguyen T., Parker C.B., Hammock C., Monica A.H., Adams E., Becker L. et al. Carbon nanotube electron ionization source for portable mass spectrometry // Anal. Chem. 2011. V. 83. P. 6527.
  127. Velásquez-García L.F., Gassend B.L.P., Akinwande A.I. CNT-based MEMS/NEMS gas ionizers for portable mass spectrometry applications // J. Microelectromech. Syst. 2010. V. 19. № 3. P. 484.
  128. Radauscher E.J., Parker C.B., Gilchrist K.H., Dona S.D., Russell Z.E., Hall S.D. et al. A miniature electron ionization source fabricated using microelectromechanical systems (MEMS) with integrated carbon nanotube (CNT) field emission cathodes and low-temperature co-fired ceramics (LTCC) // Int. J. Mass Spectrom. 2017. V. 422. P. 162.
  129. Radauscher E.J., Keil A.D., Wells M., Amsden J.J., Piascik J.R., Parker C.B. et al. Chemical ionization mass spectrometry using carbon nanotube field emission electron sources // J. Am. Soc. Mass Spectrom. 2015. V. 26. № 11. P. 1903.
  130. Qiao J., Li L., Liu X., Wu Y., Nie Z., Wang X., Zhou H. Carbon nanotube thin films as photoemissive ionization source / Proc. of the 17th IEEE Int. Conf. on Nanotechnology. Pittsburgh, 2017. P. 565.
  131. Grzebyk T., Szyszka P., Krysztof M., Górecka-Drzazga A., Dziuban J. MEMS ion source for ion mobility spectrometry // J. Vac. Sci. Technol. B. 2019. V. 37. № 2. Article 022201.
  132. Postler J., Goulart M.M., Matias C., Mauracher A., Ferreira da Silva F., Scheier P. et al. Dissociative electron attachment to the nitroamine HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) // J. Am. Soc. Mass Spectrom. 2013. V. 24. № 5. P. 744.
  133. Lai R., Dodds E.D., Li H. Molecular dynamics simulation of ion mobility in gases // J. Chem. Phys. 2018. V. 148. Article 064109.
  134. Koopman J., Grimme S. Calculation of mass spectra with the QCxMS method for negatively and multiply charged molecules // J. Am. Soc. Mass Spectrom. 2022. V. 33. № 12. P. 2226.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Qualitative assessments of analytical, operational and cost characteristics of stationary MS and SIP and the choice of consumers in favor of SIP as the basis for ensuring mass control of illegal trafficking of explosives.

Download (322KB)
3. Table 2.

Download (92KB)

Copyright (c) 2025 Russian Academy of Sciences