Development of an algorithm for processing “electronic nose” data on piezosensors when analyzing blood samples without sample preparation: a pilot study

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The first results of blood analysis of patients of different profile departments without sample preparation using portable “electronic nose” on piezosensors are presented. During half a year on the basis of the clinical laboratory of the regional hospital the blood of patients was analyzed in parallel by traditional and sensor methods. The influence of conditions (room temperature, repetition rate, nature of modifiers of piezosensor electrodes) on the repeatability of sensor array signals was considered. Effective approaches and algorithms for processing multidimensional data of the piezosensor array for detection of the profile of volatile compounds (VOCs) of blood of small volume (not more than 0.5 ml) are proposed. The use of type II distilled water samples is effective as an internal standard when analyzing blood samples without sample preparation in a laboratory setting. Blood samples from 250 patients were analyzed. It was found that the set of piezosensors reliably distinguishes samples with pronounced pathologies of inflammation, oncology, serious problems in kidney function, the highest level of stress (surgery; traffic accident with injuries incompatible with life; burns). Other pathologies are also recorded with the proposed parameter, but its value depends on the individual state of the patient, the presence of comorbidities, the achievement of compensation, the degree of severity of negative processes on admission (for example, type 2 diabetes mellitus). The difference of VOC profiles for samples with different significant pathologies with component-by-component analysis is the subject of the next communication. The method of blood volatile compounds detection (measurement mode, repetition rate) is optimized and simple efficient algorithms for sensor data array processing are proposed.

Full Text

Restricted Access

About the authors

Т. A. Kuchmenko

V. I. Vernadsky Institute of Geochemistry and Analytical Chemistry, RAS; Voronezh State University of Engineering Technologies

Author for correspondence.
Email: tak1907@mail.ru
Russian Federation, Moscow; Voronezh

D. A. Menzhulina

N.N. Burdenko Voronezh State Medical University. N.N. Burdenko

Email: tak1907@mail.ru
Russian Federation, Voronezh

References

  1. Teränen V., Nissinen S., Roine A., Antila A., Siiki A., Vaalavuo Y., Kumpulainen P., Oksala N., Laukkarinen J. Bile-volatile organic compounds in the diagnostics of pancreatic cancer and biliary obstruction: A prospective proof-of-concept study // Front. Oncol. 2022. V. 12. № 918539. https://doi.org/10.3389/fonc.2022.918539
  2. Navaneethan U., Parsi M.A., Gutierrez N.G., Bhatt A., Venkatesh P.G., Lourdusamy D., Grove D., Hammel J.P., Jang S., Sanaka M.R., Stevens T., Vargo J.J., Dweik R.A. Volatile organic compounds in bile can diagnose malignant biliary strictures in the setting of pancreatic cancer: A preliminary observation // Gastrointest. Endosc. 2014. V. 8. Iss. 6. P. 1038. https://doi.org/10.1016/j.gie.2014.04.016
  3. Nissinen S.I., Roine A., Hokkinen L., Karjalainen M., Venäläinen M., Helminen H., Niemi R., Lehtimäki T., Rantanen T., Oksala N. Detection of pancreatic cancer by urine volatile organic compound analysis // Anticancer Res. 2019. V. 39. № 1. P. 73. https://doi.org/10.21873/anticanres.13081; PMID: 30591442
  4. Esfahani S., Wicaksono A., Mozdiak E., Arasaradnam R.P., Covington J.A. Non-invasive diagnosis of diabetes by volatile organic compounds in urine using FAIMS and Fox4000 electronic nose // Biosensors (Basel). 2018. V. 8. № 4. P. 121. https://doi.org/10.3390/bios8040121; PMID: 30513787; PMCID: PMC6316010
  5. Weng X., Li G., Liu Z., Liu R., Liu Z., Wang S., Zhao S., Ma X., Chang Z. A preliminary screening system for diabetes based on in-car electronic nose // Endocr. Connect. 2023. V. 12. № 3. e220437. https://doi.org/10.1530/EC-22-0437; PMID: 36662684; PMCID: PMC9986382
  6. Khokhar M. Non-invasive detection of renal disease biomarkers through breath analysis // J. Breath Res. 2024. V. 18. Article 024001. https://doi.org/10.1088/1752-7163/ad15fb
  7. Gaye O., Fall C.B., Jalloh M., Faye B., Jobin M., Cussenot O. Detection of urological cancers by the signature of organic volatile compounds in urine, from dogs to electronic noses // Curr. Opin. Urol. 2023. V. 33. № 6. P. 437. https://doi.org/10.1097/MOU.0000000000001128; PMID: 37678152
  8. Afonso H.A.S., Farraia M.V., Vieira M.A., Cavaleiro Rufo J. Diagnosis of pathological conditions through electronic nose analysis of urine samples: A systematic review and meta-analysis // Porto Biomed. J. 2022. V. 7. № 6. e188. https://doi.org/10.1097/j.pbj.0000000000000188; PMID: 37152083; PMCID: PMC10158878
  9. Pelling M., Chandrapalan S., West E., Arasaradnam R.P. A systematic review and meta-analysis: Volatile organic compound analysis in the detection of hepatobiliary and pancreatic cancers // Cancers (Basel). 2023. V. 15. № 8. P. 2308. https://doi.org/10.3390/cancers15082308; PMID: 37190235; PMCID: PMC10136496
  10. Laird S., Debenham L., Chandla D., Chan C., Daulton E., Taylor J., Bhat P., Berry L., Munthali P., Covington J.A. Breath analysis of COVID-19 patients in a tertiary UK hospital by optical spectrometry: The E-Nose CoVal study // Biosensors (Basel). 2023. V. 13. № 2. P. 165. https://doi.org/10.3390/bios13020165; PMID: 36831932; PMCID: PMC9953365
  11. Wintjens A.G.W.E., Hintzen K.F.H., Engelen S.M.E., Lubbers T., Savelkoul P.H.M., Wesseling G., van der Palen J.A.M., Bouvy N.D. Applying the electronic nose for pre-operative SARS-CoV-2 screening // Surg. Endosc. 2021. V. 35. № 12. P. 6671. https://doi.org/10.1007/s00464-020-08169-0; PMID: 33269428; PMCID: PMC7709806
  12. Wilson A.D., Forse L.B. Potential for early noninvasive COVID-19 detection using electronic-nose technologies and disease-specific VOC metabolic biomarkers // Sensors (Basel). 2023. V. 23. № 6. P. 2887. https://doi.org/10.3390/s23062887; PMID: 36991597; PMCID: PMC10054641
  13. Wilson A.D. Application of electronic-nose technologies and VOC-biomarkers for the noninvasive early diagnosis of gastrointestinal diseases // Sensors (Basel). 2018. V. 18. № 8. P. 2613. https://doi.org/10.3390/s18082613; PMID: 30096939; PMCID: PMC6111575
  14. De Meij T.G., Larbi I.B., van der Schee M.P., Lentferink Y.E., Paff T., sive Droste J.S.T., Mulder C.J., van Bodegraven A.A., de Boer N.K. Electronic nose can discriminate colorectal carcinoma and advanced adenomas by fecal volatile biomarker analysis: Proof of principle study // Int. J. Cancer. 2014. V. 134. № 5. P. 1132. https://doi.org/10.1002/ijc.28446
  15. de Kroon R.R., Frerichs N.M., Struys E.A., de Boer N.K., de Meij T.G.J., Niemarkt H.J. The potential of fecal volatile organic compound analysis for the early diagnosis of late-onset sepsis in preterm infants: A narrative review // Sensors (Basel). 2024. V. 24. № 10. P. 3162. https://doi.org/10.3390/s24103162; PMID: 38794014; PMCID: PMC11124895
  16. Arasaradnam R.P., Covington J.A., Harmston C., Nwokolo C.U. Review article: Next generation diagnostic modalities in gastroenterology--gas phase volatile compound biomarker detection // Aliment. Pharmacol. Ther. 2014. V. 39. № 8. P. 780. https://doi.org/10.1111/apt.12657; Epub Feb 20, 2014. PMID: 24612215
  17. Hosfield B.D., Pecoraro A.R., Baxter N.T., Hawkins T.B., Markel T.A. The assessment of fecal volatile organic compounds in healthy infants: Electronic nose device predicts patient demographics and microbial enterotype // J. Surg. Res. 2020. V. 254. P. 340. https://doi.org/10.1016/j.jss.2020.05.010; PMID: 32526503; PMCID: PMC7483828
  18. Wei C., Pan Y., Zhang W., He Q., Chen Z., Zhang Y. Comprehensive analysis between volatile organic compound (VOC) exposure and female sex hormones: A cross-sectional study from NHANES 2013-2016 // Environ. Sci. Pollut. Res. Int. 2023. V. 30. № 42. P. 95828. doi: 10.1007/s11356-023-29125-0; PMID: 37561291
  19. ГОСТР 52501-2005. Национальный стандарт РФ. Вода для лабораторного анализа. Технические условия. М.: Стандартинформ, 2008. 16 с.
  20. Кучменко Т.А., Умарханов Р.У., Менжулина Д.А. Биогидроксиапатит – новая фаза для селективного микровзвешивания паров органических соединений – маркеров воспаления в носовой слизи телят и человека. Сообщение 1. Сорбция в модельных системах // Сорбционные и хроматографические процессы. 2021. Т. 21. № 2. С. 142.
  21. Kuchmenko Т.А. Electronic nose based on nanoweights, expectation and reality // Pure Appl. Chem. 2017. V. 89. № 10. P. 1587. https://doi.org/10.1515/pac-2016-1108
  22. Kuchmenko T.A., Lvova L.B. A perspective on recent advances in piezoelectric chemical sensors for environmental monitoring and foodstuffs analysis // Chemosensors. 2019. V. 7. № 3. P. 39. https://doi.org/10.3390/chemosensors7030039
  23. Kuchmenko T.A., Lvova L.B. Piezelectric chemosensors and multisensory systems / Chemoresponsive Materials: Smart Materials for Chemical and Biological Stimulation. 2nd Ed. / Ed. Schneider H., The Royal Society of Chemistry, 2022, Ch. 16. P. 567. https://pubs.rsc.org/en/content/ebook/978-1-83916-277-0
  24. Кучменко Т.А. Химические сенсоры на основе пьезокварцевых микровесов / Проблемы аналитической химии. Т. 14 / Под ред. Власова Ю.Г. М.: Наука, 2011. С. 127.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Photo of the portable “electronic nose” Bio-8 with frontal mode of sample vapor supply and spontaneous desorption based on eight piezoelectric sensors. (a) – working state, (b) – open detection cell.

Download (353KB)
3. Fig. 2. Integral analytical signals of the sensor array in distilled water vapor: (a) – “visual fingerprints” of the maxima and (b) – kinetic “visual fingerprints” of the sensor signals. The quantitative characteristics of the integral signals – average areas of geometric figures – are indicated under the figures. The radial axes in Fig. 2a show the maximum sensor signals during the measurement time –ΔFmax, Hz. The ordinal numbers of the sensors in the array are marked in the circle (S001–S008). The radial axes in Fig. 2b show the sensor signals at the corresponding moment of measurement time –ΔFi(1–8), Hz. The time of recording the sensor signals is marked in the circle, s.

Download (264KB)
4. Table 5.1

Download (49KB)
5. Table 5.2

Download (53KB)
6. Table 5.3

Download (51KB)
7. Table 5.4

Download (49KB)
8. Table 5.5

Download (47KB)
9. Table 5.6

Download (54KB)
10. Table 5.7

Download (47KB)
11. Table 5.8

Download (48KB)
12. Table 6.1

Download (50KB)
13. Table 6.2

Download (54KB)
14. Table 6.3

Download (45KB)
15. Table 6.4

Download (39KB)
16. Table 6.5

Download (47KB)
17. Table 6.6

Download (49KB)
18. Table 6.7

Download (37KB)
19. Table 6.8

Download (34KB)

Copyright (c) 2025 Russian Academy of Sciences