Synthesis of Graphdiynes, Morphological Study, and Comparative Analysis of the Hydrogen Adsorption Properties of Graphenes and Graphdiynes
- Authors: Soldatov A.P.1, Budnyak A.D.1, Kirichenko A.N.2, Ilolov A.M.1
- 
							Affiliations: 
							- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
- Private Institution of the State Atomic Energy Corporation Rosatom ITER Project Center
 
- Issue: Vol 97, No 10 (2023)
- Pages: 1457-1463
- Section: PHYSICAL CHEMISTRY OF NANOCLUSTERS, SUPRAMOLECULAR STRUCTURES, AND NANOMATERIALS
- Submitted: 26.02.2025
- Published: 01.10.2023
- URL: https://ruspoj.com/0044-4537/article/view/668643
- DOI: https://doi.org/10.31857/S0044453723100229
- EDN: https://elibrary.ru/PNXVFH
- ID: 668643
Cite item
Abstract
Graphdiynes (GDYs) are two-dimensional carbon nanostructures containing sp- and sp2-hybridized carbon atoms that form conjugated bonds in the linear chains connecting six-membered carbon rings. The results of scanning and transmission electron microscopy (SEM and TEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy showed that GDYs have a uniform surface and contain conjugated –С≡С–С≡С bonds. The hydrogen-adsorption capacity of GDYs was studied, and a comparative analysis of hydrogen adsorption in GDYs, graphenes, graphene nanotubes, and graphene structures formed on zeolites was performed. The substrate on which the carbon nanostructure is formed was shown to have a significant effect on the adsorption capacity of the latter. The possibility and prospects for the synthesis of graphenes on catalysts to increase their efficiency in hydrogenation processes are considered.
About the authors
A. P. Soldatov
Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
														Email: Soldatov@ips.ac.ru
				                					                																			                												                								119991, Moscow, Russia						
A. D. Budnyak
Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
														Email: Soldatov@ips.ac.ru
				                					                																			                												                								119991, Moscow, Russia						
A. N. Kirichenko
Private Institution of the State Atomic Energy Corporation Rosatom ITER Project Center
														Email: Soldatov@ips.ac.ru
				                					                																			                												                								119991, Moscow, Russia						
A. M. Ilolov
Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
							Author for correspondence.
							Email: Soldatov@ips.ac.ru
				                					                																			                												                								119991, Moscow, Russia						
References
- Balaban A.T., Rentia C.C., Ciupitu E. // Rev. Roum. Chim. 1968. V. 13. P. 231.
- Baughman R., Eckhardt H., Kertesz M. // J. Chem. Phys. 1987. V. 87. № 11. P. 6687.
- Ivanovskii A.L. // Prog. Solid State Chem. 2013. V. 41. № 1. P. 1.
- Wan W.B., Brand S.C., Pak J.J. et al. // Chem. A Eur. J. 2000. V. 6. № 11. P. 2044.
- Li G.X., Li Y.L., Liu H.B. et al. // Chem. Commun. 2010. V. 46. P. 3.
- Li G., Li Y., Qian X. et al. // J. Phys. Chem. C. 2011. V. 115. P. 2611.
- Zhou J., Gao X., Liu R. et al. // J. Am. Chem. Soc. 2015. V. 137. № 24. P. 7596.
- Yang N., Liu Y., Wen H. et al. // Nano. 2013. V. 7. № 2. P. 1504.
- Huang C., Zhang S., Liu H. et al. // Nano Energy. 2015. V. 11. P. 481.
- Kuang C., Tang G., Jiu T. et al. // Nano Lett. 2015. V. 15. № 4. P. 2756.
- Gao X., Zhou J., Du R. et al. // Adv. Mater. 2015. https://doi.org/10.1002/adma.201504407
- Li J., Xu J., Xie Z. et al. // Adv. Mater. 2018. V. 30. P. 1800548.
- Si H-Y., Mao C-J., Zhou J-Y. et al. // Carbon. 2018. V. 132. P. 598.
- Yao Y., Jin Z., Chen Y. et al. // Ibid. 2018. V. 129. P. 228.
- Shekar S.C., Swath R.S. // Ibid. 2018. V. 126. P. 489.
- Li C., Lu X., Han Y. et al. // Nano Research. 2018. V. 11. № 3. P. 1714.
- Pan Y., Wang Y., Wang L. et al. // Nanoscale. 2015. V. 7. P. 2116.
- Kan X., Ban Y., Wu C. et al. // ACS Appl. Mater. & Interfaces. 2018. V. 10. № 1. P. 53.
- Mortazavi B., Makaremi M., Shahrokhi M. et al. // Carbon. 2018. V. 137. P. 57.
- Dong Y., Zhao Y., Chen Y. et al. // J. of Materials Sci. 2018. V. 53. № 12. P. 8921.
- Huoliang Gu. et al. // J. Am. Chem. Soc. 2021. V. 143. № 23. P. 8679.
- Yuncheng Du. et al. // Acc. Chem. Res. 2020. V. 53. № 2. P. 459.
- Yang Z. et al. // Comput. Mater. Sci. 2019. V. 160. P. 197.
- Zuo Z., Li Y. // Joule. 2019. V. 3. P. 899.
- Hui L., Xue Y., Yu H. et al. // J. Am. Chem. Soc. 2019. V. 141. P. 10677.
- Guo J., Shi R.C., Wang R. et al. // Laser Photonics Rev. 2020. V. 14. P. 1900367.
- Yin C., Li J.Q., Li T.R. et al. // Adv. Funct. Mater. 2020. V. 30. https://doi.org/. 202001396.https://doi.org/10.1002/adfm
- Guo J., Shi R.C., Wang R. et al. // Laser Photonics Rev. 2020. V. 14. P. 1900367.
- Yan H., Yu P., Han G. et al. // Angew. Chem. Int. Ed. Engl. 2019. V. 58. P. 746.
- Zhou J.Y., Xie Z.Q., Liu R. et al. // ACS Appl. Mater. Interfaces. 2019. V. 11. P. 2632.
- Lv J.X., Zhang Z.M. Wang J. et al. // WACS Appl. Mater. Interfaces. 2019. V. 32.
- Zuo Z., Shang H., Chen Y. et al. // Chem. Commun. (Camb.). 2017. V. 53. P. 8074.
- Li R., Sun H., Zhang Ch. et al. // Carbon. 2022. V. 188. P. 25.
- Gao J., Li J., Chen Y. et al. // Nano Energy. 2018. V. 43. P. 192.
- Yang Z., Zhang Y., Guo M. et al. // Comput. Mater. Sci. 2019. V. 160. P. 197.
- Солдатов А.П., Бондаренко Г.Н., Сорокина Е.Ю. // Журн. физ. химии. 2015. Т. 89. № 2. С. 306. [Soldatov A.P., Bondarenko G.N., Sorokina E.Yu. // Russ. J. of Phys. Chem. A. 2015. V. 89. № 2. P. 282.]
- Tuinstra R., Koenig J.L. // J. Chem. Phys. 1970. V. 53. P. 1126.
- Estrade-Szwarckopf H. // Carbon. 2004. V. 42. P. 1713.
- Ferrari A.C., Meyer J.C., Scardaci V. et al. // Phys. Rev. Lett. 2006. V. 97. P. 187401.
- Солдатов А.П. // Журн. физ. химии. 2020. Т. 94. № 4. С. 483. [Soldatov A.P. // Russ. J. of Phys. Chem. A. 2020. V.94. № 4. P. 663.]
- Солдатов А.П., Кириченко А.Н., Татьянин Е.В. // Там же. 2016. Т. 90. № 7. С. 1038.
- Солдатов А.П. // Там же. 2019. Т. 93. № 3. С. 398. [Soldatov A.P. // Ibid. 2019. V. 93. №3. P. 494.]
- Солдатов А.П. // Там же. 2014. Т. 88. № 7–8. С. 1207. [Soldatov A.P. // Ibid. 2014. V. 88. № 8. P. 1388.]
- Солдатов А.П. // Журн. физ. химии. 2017. Т. 91. № 5. С. 897. [Soldatov A.P. // Ibid.2017. V. 91. № 5. P. 931.]
- Токабе И.К. Катализаторы каталитические процессы. М.: Наука, 1993.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					



