Bulk properties of the water-urea-choline chloride system
- Authors: Kalinyuk D.A.1, Selezeneva E.A.2, Yumakov D.I.2, Kosova G.N.2,3
-
Affiliations:
- M. V. Lomonosov Moscow State University
- Mari State University
- Volga State University of Technology
- Issue: Vol 99, No 4 (2025)
- Pages: 584-594
- Section: ФИЗИЧЕСКАЯ ХИМИЯ РАСТВОРОВ
- Submitted: 14.06.2025
- Accepted: 14.06.2025
- Published: 15.06.2025
- URL: https://ruspoj.com/0044-4537/article/view/684394
- DOI: https://doi.org/10.31857/S0044453725040076
- EDN: https://elibrary.ru/FPALOY
- ID: 684394
Cite item
Abstract
The available experimental data on the solution densities of two binary subsystems, viz. water — choline chloride and urea — choline chloride, and the ternary water — urea — choline chloride system are analyzed. The parameters of the Pitzer-Simonson-Clegg bulk model describing the experimental values of molar volumes of solutions of both binary subsystems and ternary system one function Vm = f(T, p, x1, x2) in the temperature range from 278.15 to 363.15 K and the pressure range from 0.1 to 50 MPa are determined. In the course of thermodynamic modeling, the dependence of the molar volume of choline chloride melt on the state parameters (p, T) is proposed. The obtained model parameters describing binary interactions in the water — choline chloride and urea — choline chloride subsystems can be used to model bulk properties of solvents with deep eutectic of different component composition.
Full Text

About the authors
D. A. Kalinyuk
M. V. Lomonosov Moscow State University
Author for correspondence.
Email: kalinyukda@my.msu.ru
ORCID iD: 0000-0002-7758-9445
Department of Chemistry
Russian Federation, Moscow, 119991E. A. Selezeneva
Mari State University
Email: kalinyukda@my.msu.ru
Russian Federation, Yoshkar-Ola, 424001
D. I. Yumakov
Mari State University
Email: kalinyukda@my.msu.ru
Russian Federation, Yoshkar-Ola, 424001
G. N. Kosova
Mari State University; Volga State University of Technology
Email: kalinyukda@my.msu.ru
Russian Federation, Yoshkar-Ola, 424001; Yoshkar-Ola, 424000
References
- Smith E.L., Abbott A.P., Ryder K.S. // Chem. Rev. 2014. V. 114. № 21. Р. 11060.
- Shahbaz K., Mjalli F.S., Gholamreza V.-N. et al. // J. Mol. Liq. 2016. V. 222. Р. 61.
- Chen W. Xue Zh., Wang J. et al. // Acta Phys. Chim. Sin. 2018. V. 34 № 8. Р. 904.
- Delgado-Mellado N., Larriba M., Navarro P. et al. // J. Mol. Liq. 2018. V. 260. Р. 37.
- Hansen B.B., Spittle St., Chen B. et al. // Chem. Rev. 2020. V. 121. № 3. Р. 1232.
- Wen Q., Chen J.-X., Tang Yu-L. et al. // Chemosphere. 2015. V. 132. Р. 63.
- El Achkar T., Greige-Gerges H., Fourmentin S. // Environ. Chem. Lett. 2021. V. 19. Р. 3397.
- Abbott A.P., Capper G., Davies D.L. et al. // J. Chem. Eng. Data. 2006. V. 51 № 4. Р. 1280.
- Abbott A.P., Capper G., Davies D.L. et al. // Chem. Commun. 2003. V. 1. Р. 70.
- Isaifan R.J., Amhamed A. // Adv. Chem. 2018. V. 2018 № 1. Р. 2675659.
- Frauenkron M., Melder J.-P., Ruider G. et al. // J. Environ. Prot. Ecol. 2012. V. 413. Р. 406.
- Mangiacapre E., Castiglione F., Aristotile M.D. et al. // J. Mol. Liq. 2023. V. 383. Р. 22120.
- Shaukat S., Buchner R. // J. Chem. Eng. Data. 2011. V. 56. № 12. Р. 4944.
- Agieienko V., Buchner R. // Ibid. 2019. V. 64. № 11. Р. 4763.
- Gilmore M., Swadzba-Kwasny M., Holbrey J.D. // J. Chem. Eng. Data. 2019. V. 64. № 12. Р. 5248.
- Leron R.B., Li M.H. // J. Chem. Thermodyn. 2012. V. 54. Р. 293.
- Shah D., Mjalli F.S. // Phys. Chem. Chem. Phys. 2014. V. 16. № 43. Р. 23900.
- Shekaari H., Zafarani-Moattar M. T., Mohammadi B. // J. Mol. Liq. 2017. V. 243. Р. 451.
- Xie Y., Dong H., Zhang S. et al. // J. Chem. Eng. Data. 2014. V. 59. № 11. Р. 3344.
- Yadav A., Pandey S. // J. Chem. Eng. Data. 2014. V. 59. № 7. Р. 2221.
- Zhekenov T., Toksanbayev N., Kazakbayeva Z. et al. // Fluid Phase Equilib. 2017. V. 441. Р. 43.
- Su W.C., Wong D.S. H., Li M.H. // J. Chem. Eng. Data. 2009. V. 54. № 6. Р. 1951.
- Haghbakhsh R., Raeissi S. // J. Chem. Thermodyn. 2018. V. 124. Р. 10.
- Dhingra D., Bhawna B., Pandey S. // J. Chem. Thermodyn. 2019. V. 130. Р. 166.
- Chemat F., Anjum H., Shariff A.M. et al. // J. Mol. Liq. 2016. V. 218. Р. 301.
- Mjalli F.S., Jabbar N.M. A. // Fluid Phase Equilib. 2014. V. 381. Р. 71.
- Kosova D.A., Voskov A.L., Uspenskaya I.A. // J. Solution Chem. 2016. V. 45. Р. 1182.
- Wagner W., Pruß A. // J. Phys. Chem. Ref. Data. 2002. V. 31. № 2. Р. 387.
- Voskov A.L., Kovalenko N.A. // Fluid Phase Equilib. 2020. V. 507. Р. 112419.
- Senko M.E., Templeton D.H. // Acta Crystallogr. 1960. V. 13. № 4. Р. 281.
- Tischer S., Börnhorst M., Amsler J. et al. // Phys. Chem. Chem. Phys. 2019. V. 21. № 30. Р. 16785. 10.1039/C9CP01529A
- Dana A.G., Shter G.E., Grader G.S. // RSC Adv. 2014. V. 4. № 66.
Supplementary files
