Rhodium electronic state in catalysts based on Rh/НZSM-5 for oxidative carbonylation of methane into acetic acid: effect of copper and zinc doping
- Authors: Shilina M.I.1, Khramov E.V.2, Batova T.I.3, Kolesnichenko N.V.3
- 
							Affiliations: 
							- Lomonosov Moscow State University
- National Research Center Kurchatov Institute
- Topchiev Institute of Petrochemical Synthesis
 
- Issue: Vol 99, No 2 (2025)
- Pages: 309-318
- Section: PHYSICAL CHEMISTRY OF DISPERSED SYSTEMS AND SURFACE PHENOMENA
- Submitted: 19.06.2025
- Published: 20.05.2025
- URL: https://ruspoj.com/0044-4537/article/view/685281
- DOI: https://doi.org/10.31857/S0044453725020172
- EDN: https://elibrary.ru/DDBUGV
- ID: 685281
Cite item
Abstract
Diffuse reflectance infrared Fourier transform spectroscopy of adsorbed carbon monoxide is used along with X-ray absorption spectroscopy to study the effect a second alloying metal (Zn, Cu) has on the electronic state and local structure of rhodium on the surfaces of Rh/HZSM-5 zeolite catalyst. It is established that introducing copper and zinc helps improve the stability of rhodium toward aggregation (the formation of clusters) under conditions of the oxidative carbonylation of methane into acetic acid. Compared to monometallic catalyst Rh/HZSM-5, where single atom rodium sites are partially aggregated into clusters, the proportion of Rh° is halved in the case of Rh–Zn/HZSM-5, and Rh clustering does not occur in the case of Rh‒Cu/HZSM-5. The stabilizing effect of Cu is due to the interaction between copper and rhodium cations on the surface of zeolite.
Full Text
 
												
	                        About the authors
M. I. Shilina
Lomonosov Moscow State University
														Email: batova.ti@ips.ac.ru
				                					                																			                								
Faculty of Chemistry
Russian Federation, Moscow, 119991E. V. Khramov
National Research Center Kurchatov Institute
														Email: batova.ti@ips.ac.ru
				                					                																			                												                	Russian Federation, 							Moscow, 123098						
T. I. Batova
Topchiev Institute of Petrochemical Synthesis
							Author for correspondence.
							Email: batova.ti@ips.ac.ru
				                					                																			                												                	Russian Federation, 							Moscow, 119991						
N. V. Kolesnichenko
Topchiev Institute of Petrochemical Synthesis
														Email: batova.ti@ips.ac.ru
				                					                																			                												                	Russian Federation, 							Moscow, 119991						
References
- Kumar P., Al-Attas T.A., Hu J., Kibria M.G. // ACS Nano. 2022. V. 16. P. 8557. https://doi.org/10.1021/acsnano.2c02464
- Shi Y.J., Zhou Y.W., Lou Y. et al. // Adv. Sci. 2022. V. 9. P. 2201520. https://doi.org/10.1002/advs.202201520
- Moteki T., Tominaga N., Ogura M. // Appl. Cat. B: Env. 2022. V. 300. P. 120742. https://doi.org/10.1016/j.apcatb.2021.120742
- Oda A., Horie M., Murata N. et al. // Catal. Sci. Technol. 2022. V. 12. P. 5488. https://doi.org/10.1039/d2cy01471h
- Kou Z., Zang W., Wang P. et al. // Nanoscale Horiz. 2020. V. 5. P. 757. https://doi.org/10.1039/D0NH00088D
- Ji Sh., Chen Y., Wang X. et al. // Chem. Rev. 2020. V. 120. P. 11900. https://doi.org/10.1021/acs.chemrev.9b00818
- Ye Ch., Zhang N., Wang D., Li Y. // Chem. Commun. 2020. V. 56. P. 7687. https://doi.org/10.1039/D0CC03221B
- Xiong H., Datye A.K., Wang Y. // Adv. Mater. 2021. V. 33. P. 2004319. https://doi.org/10.1002/adma.202004319
- Alvarez-Galvan C., Melian M., Ruiz-Matas L. et al. // Front. Chem. 2019. V. 7. P. 104. https://doi.org/10.3389/fchem.2019.00104
- Hou Y., Nagamatsu Sh., Asakura K. et al. // Commun. Chem. 2018. V. 1. P. 41. https://doi.org/10.1038/s42004-018-0044-9
- Prieto G., Zečevic J., Friedrich H. et al. // Nat. Mater. 2013. V. 12. P. 34. https://doi.org/10.1038/nmat3471
- Feng S., Song X., Ren Zh., Ding Y. // Ind. Eng. Chem. Res. 2019. V. 58. P. 4755. https://doi.org/10.1021/acs.iecr.8b05402
- Batova T.I., Stashenko A.N., Obukhova T.K. et al. // Micropor. Mesopor. Mater. 2023. V. 366. P. 112953. https://doi.org/10.1016/j.micromeso.2023.112953
- Pappas D.K., Borfecchia E., Dyballa M. et al. // Chem. Cat. Chem. 2019. V. 11. P. 621. https://doi.org/10.1002/cctc.201801542
- Zhang P., Yang X., Hou X. et al. // Catal. Sci. Technol. 2019. V. 9. P. 6297. https://doi.org/10.1039/C9CY01749F
- Mahyuddin M.H., Tanaka S., Shiota Y., Yoshizawa K. // Bull. Chem. Soc. Jpn. 2020. V. 93. P. 345. https://doi.org/10.1246/bcsj.20190282
- Wang S., Guo Sh., Luo Y. et al. // Catal. Sci. Technol. 2019. V. 9. P. 6613. https://doi.org/10.1039/C9CY01803D
- Matsubara H., Tsuji E., Moriwaki Y. et al. // Catal. Lett. 2019. V. 149. P. 2627. https://doi.org/10.1007/s10562-019-02855-y
- Chernyshov A.A., Veligzhanin A.A., Zubavichus Y.V. // Nucl. Instrum. Methods Phys. Res. A. 2009. T. 603. P. 95. https://doi.org/10.1016/j.nima.2008.12.167
- Newville M. // J. Synchrotron Radiat. 2001. V. 8. P. 96. https://doi.org/10.1107/S0909049500016290
- Kolesnichenko N.V., Batova T.I., Stashenko A.N. et al. // Microporous Mesoporous Mater. 2022. V. 344. P. 112239. https://doi.org/10.1016/j.micromeso.2022.112239
- Ivanova E., Mihaylov M., Thibault-Starzyk F. et al. // Catal. 2005. V. 236. P. 168. https://doi.org/10.1016/j.jcat.2005.09.017
- Hadjiivanov K., Ivanova E., Dimitrov L., Knözinger H. // J. Molec. Struct. 2003. V. 661–662. P. 459. https://doi.org/10.1016/j.molstruc.2003.09.007
- Osuga R., Saikhantsetseg B., Yasuda S. et al. // Chem. Commun. 2020. V. 56. P. 5913. https://doi.org/10.1039/D0CC02284E
- Davydov A. Edited by Sheppard N. Molecular Spectroscopy of Oxide Catalyst Surfaces. England: John Wiley & Sons Ltd, Chichester, 2003. P. 668. https://doi.org/10.1016/s1351-4180(03)01049-3
- Hadjiivanov K.I., Vayssilov G.N. // Adv. Catal. 2002. V. 47. P. 307. http://dx.doi.org/10.1016/0920-5861(95)00163-8
- Asokan C., Thang H., Pacchioni G., Christopher P. // Catal. Sci. Technol. 2020. V. 10. P. 1597. https://doi.org/10.1039/D0CY00146E
- Matsubu J.C., Yang V.N., Christopher P. // J. Am. Chem. Soc. 2015. V. 137. P. 3076. https://doi.org/10.1021/ja5128133
- Шилина М.И., Обухова Т.К., Батова Т.И., Колесниченко Н.В. // Журн. физ. химии. 2023. Т. 97. № 7. С. 944. https://doi.org/10.31857/S0044453723070269 [Shilina M.I., Obukhova T.K., Batova T.I., Kolesnichenko N.V. // Russ. J. Phys. Chem. A. 2023. V. 97. № 7. P. 1387. https://doi.org/10.1134/S0036024423070269]
- Субботин А.Н., Жидомиров Г.М., Субботина И.Р., Казанский В.Б. // Кинетика и катализ. 2013. Т. 54. № 6. С. 786. https://doi.org/10.7868/S0453881113060130 [Subbotin A.N., Zhidomirov G.M., Subbotina I.R., Kazansky V.B. // Kinet. Catal. 2013. V. 54. № 6. Р. 744. https://doi.org/10.1134/s002315841306013x]
- Palomino G.T., Fisicaro P., Bordiga S. et al. // J. Phys. Chem. B. 2000. V. 104. P. 4064. https://doi.org/10.1021/jp993893u
- Ikuno T., Grundner S., Jentys A. et al. // J. Phys. Chem. C. 2019. V. 123. P. 8759. https://doi.org/10.1021/acs.jpcc.8b10293
- Sushkevich V.L., van Bokhoven J.A. // Chem. Commun. 2018. V. 54. P. 7447. https://doi.org/10.1039/c8cc03921f
- Lamberti C., Groppo E., Spoto G. et al. // Adv. Catal. 2007. V. 51. P. 1. https://doi.org/10.1016/S0360-0564(06)51001-6
- Ivanin I.A., Udalova O.V., Kaplin I.Yu., Shilina M.I. // Applied Surface Science. 2024. V. 655. P. 159577. https://doi.org/10.1016/j.apsusc.2024.159577
- Skinner W.M., Prestidge C.A., Smart R.St.C. // Surf. Interf. Anal. 1996. V. 24. P. 620. https://doi.org/10.1002/(SICI)1096-9918(19960916)24:9<620:: AID-SIA151>3.0.CO;2-Y
- Carrasco E., Oujja M., Sanz M. et al. // Microchem J. 2018. V. 137. P. 381. https://doi.org/10.1016/j.microc.2017.11.014
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted





