On the transition temperature of liquid supercooled aqueous solution into ferroelectric state

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The temperature of the ferroelectric transition of a liquid solution of a polar substance in water is calculated. An experiment is proposed to test the assumption about the ferroelectric nature of the known anomalous properties of water.

Sobre autores

A. Maksimychev

Moscow Institute of Physics and Technology (State University)

Moscow Region Dolgoprudny, Russia

L. Menshikov

Moscow Institute of Physics and Technology (State University); National Research Center “Kurchatov Institute”

Email: mleonid1954@mail.ru
Moscow Region Dolgoprudny, Russia; Moscow, Russia

P. Menshikov

Moscow Institute of Physics and Technology (State University); National Research Center “Kurchatov Institute”; Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences

Moscow Region Dolgoprudny, Russia; Moscow, Russia; Moscow, Russia

M. Tsarkov

Moscow Institute of Physics and Technology (State University); National Research Center “Kurchatov Institute”; Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences

Moscow Region Dolgoprudny, Russia; Moscow, Russia; Moscow, Russia

Bibliografia

  1. Fedichev P.O., Menshikov L.I. Ferro-electric phase transition in a polar liquid and the nature of λ-transition in supercooled water. arXiv:0808.0991v1 [cond-mat.stat-mech] 7 Aug 2008.
  2. Меньшиков Л.И., Федичев П.О. // Журн. физ. химии. 2011. Т. 85. № 5. С. 996.
  3. Меньшиков Л.И., Меньшиков П.Л., Федичев П.О. // УФН. 2020. Т. 190. № 5. С. 475.
  4. Меньшиков Л.И., Федичев П.О. // Журн. физ. химии. 2009. Т. 83. С. 1103.
  5. Stogrin А. // IEEE Trans. Microwave Theory Tech. 1971. V. MIT-19. P. 733.
  6. Liebe H., Huord G., Manabe T. // J. Infrared and Millimeter Waves. 1991. V. 12. P. 659.
  7. Hasted J., Ritson D., Collie C. // J. Chem. Phys. 1948. V. 16. P. 1.
  8. Hodge I., Angell C. // J. Chem. Phys. 1978. V. 68. P. 1363.
  9. Angell C., Shuppert J., Tucker J. // J. Phys. Chem. 1973. V. 77. P. 3092.
  10. Speedy R., Angell C. // J. Chem. Phys. 1976. V. 65. P. 851.
  11. Ter Minassian L., Pruzan P., Soulard A. // Ibid. 1981. V. 75. P. 3064.
  12. Angell C., Sichina W., Oguni M. // J. Phys. Chem. 1982. V. 86. P. 998.
  13. Huang C., et al. // J. Chem. Phys. 2010. V. 133. P. 134504.
  14. Sellberg J A., et al. // Nature. 2014. V. 510. P. 381.
  15. Саркисов Г.Н. // УФН. 2006. Т. 176. № 7. С. 833.
  16. Fedichev P.O., Menshikov L.I., Bordonskiy G.S., Orlov A.O. // JETP Letters. 2011. V. 94. № 5. P. 401.
  17. Petrov O., Furó I. // Prog. Nucl. Magn. Reson. Spectrosc. 2009. V. 54. P. 97.
  18. Gorshunov B., et al. // Nature COMMUNICATIONS. 2016. V. 7. P. 12842.
  19. Лифшиц Е.М., Питаевский Л.П. Статистическая физика. Ч. 2. М.: Наука, 1978. 448 с.
  20. Malosso C., et. al. // PNAS. 2024. V. 121. № 32. e2407295121.
  21. Izzo M.G., Russo J., Pastore G. // PNAS. 2024. V. 121. № 47. e2412456121.
  22. Fedichev P.O., Menshikov L.I. // Письма в ЖЭТФ. 2013. Т. 97. № 4. С. 241; JETP Letters. 2013. V. 97. P. 214.
  23. Gell-Mann M., Brueckner K.A. // Phys. Rev. 1957. V. 106. P. 364.
  24. Bell R.P., McDougall A. O. // Trans. Farad. Soc. 1960. V. 56. P. 1281.
  25. Термодинамические характеристики неводных растворов электролитов: cправочник / под ред. Г.М. Полторацкого. Ленинград: Химия, 1984. 302 с.
  26. Рабинович В.А., Хавин З.Я. Краткий химический справочник. Ленинград: Химия, 1991. 356 с.
  27. Jähnert S. // Phys. Chem. Chem. Phys. 2008. V. 10. P. 6039.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025