Thermodynamics of Cesium Molybdate-Based Single Crystals: Standard Enthalpy of Formation, Lattice Enthalpy, and Heat Capacity
- 作者: Matskevich N.I.1, Semerikova A.N.1, Trifonov V.A.1, Samoshkin D.A.1,2, Chernov A.A.2, Stankus S.V.2, Luk’yanova S.A.1, Shlegel’ V.N.1, Zaitsev V.P.1,3, Kuznetsov V.A.1
- 
							隶属关系: 
							- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
- Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences
- Siberian State University of Water Transport
 
- 期: 卷 68, 编号 2 (2023)
- 页面: 203-208
- 栏目: ФИЗИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ
- URL: https://ruspoj.com/0044-457X/article/view/665304
- DOI: https://doi.org/10.31857/S0044457X22601456
- EDN: https://elibrary.ru/LPHEOT
- ID: 665304
如何引用文章
详细
Cs2MoO4 and Li1.9Cs0.1MoO4 crystals were grown from melt by the low-thermal-gradient Czochralski technique. The standard formation enthalpy of cesium molybdate Cs2MoO4 was measured by solution calorimetry. The heat capacity of Li1.9Cs0.1MoO4 was measured by differential scanning calorimetry (DSC) in the temperature range 320–710 K. The lattice enthalpy of Cs2MoO4 was calculated using the Born-Haber cycle. Cesium molybdate was shown to be thermodynamically stable to decomposition into constituent simple oxides (Cs2O and MoO3), which made it promising for application. Li1.9Cs0.1MoO4 experienced no phase transitions in the temperature range 320–710 K.
作者简介
N. Matskevich
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: nata.matskevich@yandex.ru
				                					                																			                												                								630090, Novosibirsk, Russia						
A. Semerikova
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: nata.matskevich@yandex.ru
				                					                																			                												                								630090, Novosibirsk, Russia						
V. Trifonov
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: nata.matskevich@yandex.ru
				                					                																			                												                								630090, Novosibirsk, Russia						
D. Samoshkin
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences; Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences
														Email: nata.matskevich@yandex.ru
				                					                																			                												                								630090, Novosibirsk, Russia; 630090, Novosibirsk, Russia						
A. Chernov
Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences
														Email: nata.matskevich@yandex.ru
				                					                																			                												                								630090, Novosibirsk, Russia						
S. Stankus
Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences
														Email: nata.matskevich@yandex.ru
				                					                																			                												                								630090, Novosibirsk, Russia						
S. Luk’yanova
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: nata.matskevich@yandex.ru
				                					                																			                												                								630090, Novosibirsk, Russia						
V. Shlegel’
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: nata.matskevich@yandex.ru
				                					                																			                												                								630090, Novosibirsk, Russia						
V. Zaitsev
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences; Siberian State University of Water Transport
														Email: nata.matskevich@yandex.ru
				                					                																			                												                								630090, Novosibirsk, Russia; 630099, Novosibirsk, Russia						
V. Kuznetsov
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
							编辑信件的主要联系方式.
							Email: nata.matskevich@yandex.ru
				                					                																			                												                								630090, Novosibirsk, Russia						
参考
- Simonenko T.L., Bocharova V.A., Simonenko N.P. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 1779. https://doi.org/10.1134/S0036023621120160
- Bekker T.B., Coron N., Danevich F.A. et al. // Astroparticle Phys. 2016. V. 72. P. 38. https://doi.org/10.1016/j.astropartphys.2015.06.002
- Barinova O., Sadovskiy A., Ermochenkov I. // J. Cryst. Growth. 2017. V. 468. P. 365. https://doi.org/10.1016/j.jcrysgro.2016.10.009
- Fattakhova Z.A., Vovkotrub E.G., Zhknarova G.S. // Russ. J. Inorg. Chem. 2021. V. 66. P. 35. https://doi.org/10.1134/S0036023621010022
- Teng T., Xiao L., Shen L. et al. // Appl. Surf. Sci. 2022. V. 601. P. 154101. https://doi.org/10.1016/j.apsusc.2022.154101
- Isaenko L.I., Korzhneva K.E., Khyzhin O.Y. et al. // J. Solid State Chem. 2019. V. 277. P. 786. https://doi.org/10.1016/j.jssc.2019.07.047
- Steblevskaya N.I., Belobeletskaya M.V., Yarovaya T.P. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 245. https://doi.org/10.1134/S0036023622020164
- Kim H., Pandey I.R., Khan A. et al. // Cryst. Res. Technol. 2019. V. 54. P. 1900079. https://doi.org/10.1002/crat.201900079
- Son J.K., Pandey I.R., Kim H.J. et al. // IEEE Trans. Nucl. Sci. 2018. V. 65. P. 2120. https://doi.org/10.1109/TNS.2018.2818330
- Papynov E.K., Shichalin O.O., Belov A.A. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 1434. https://doi.org/10.1134/S0036023621090114
- Smith A.L., Kauric G., van Eijck L. et al. // J. Solid State Chem. 2017. V. 253. P. 89. https://doi.org/10.1016/j.jssc.2017.05.032
- Matskevich N.I., Semerikova A.N., Shlegel V.N. et al. // J. Alloys Compd. 2021. V. 850. P. 156683. https://doi.org/10.1016/j.jallcom.2020.156683
- Kasimkin P.V., Moskovskih V.A., Vasiliev Y.V. // J. Cryst. Growth. 2014. V. 390. P. 67. https://doi.org/10.1016/j.jcrysgro.2013.12.027
- Volokitina A., Loiko P., Pavlyuk A. et al. // Opt. Mater. Express. 2020. V. 10. P. 2356. https://doi.org/10.1364/OME.400894
- Matiutin A.S., Kovalenko N.A., Uspenskaya I.A. // J. Chem. Eng. Data. 2022. V. 67. P. 984. https://doi.org/10.1021/acs.jced.1c00849
- Druzhinina A.I., Tiflova L.A., Monayenkova A.S. et al. // Russ. J. Phys. Chem. A. 2019. V. 93. P. 2101. https://doi.org/10.1134/S0036024419110098
- Matskevich N.I., Kellerman D.G., Gelfond N.V. et al. // Russ. J. Inorg. Chem. 2020. V. 65. P. 720. https://doi.org/10.1134/S0036023620050150
- Tsvetkov D.S., Sereda V.V., Malyshkin D.A. et al. // Chim. Techno Acta. 2021. V. 7. P. 42. https://doi.org/10.15826/CHIMTECH.2020.7.2.01
- Matskevich N.I., Wolf Th., Vyazovkin I.V. et al. // J. Alloys Compd. 2015. V. 628. P. 126. https://doi.org/10.1016/j.jallcom.2014.11.220
- Matskevich N.I., Chuprova M.V., Punn R. et al. // Thermochim. Acta. 2007. V. 459. P. 125. https://doi.org/10.1016/j.tca.2007.03.015
- Matskevich N.I., Krabbes G., Berasteguie P. // Thermochim. Acta. 2003. V. 397. P. 97. https://doi.org/10.1016/S0040-6031(02)00330-1
- Kilday M.V. // J. Res. Nat. Bur. Stand. 1980. V. 85. P. 467.
- Gunther C., Pfestorf R., Rother M. et al. // J. Therm. Anal. Calorim. 1988. V. 33. P. 359. https://doi.org/10.1007/BF01914624
- Guskov A.V., Gagarin P.G., Guskov V.N. et al. // Russ. J. Phys. Chem. A. 2022. V. 96. P. 1195. https://doi.org/10.1134/S0036024422060103
- Zvereva I.A., Shelyapina M.G., Chislov M. et al. // J. Therm. Anal. Calorim. 2022. V. 147. P. 6147. https://doi.org/10.1007/s10973-021-10947-4
- Kosova D.A., Provotorov D.I., Kuzovchikov S.V. et al. // Russ. J. Inorg. Chem. 2020. V. 65. P. 752. https://doi.org/10.1134/S0036023620050125
- Samoshkin D.A., Agazhanov A.Sh., Stankus S.V. // J. Phys.: Conf. Ser. 2021. V. 2119. P. 012135. https://doi.org/10.1088/1742-6596/2119/1/012135
- Smirnova N.N., Markin A.V., Abarbanel N.V. et al. // Russ. J. Phys. Chem. A. 2021. V. 95. P. 2387. https://doi.org/10.1134/S0036024421120219
- Matskevich N.I., Wolf Th., Le Tacon M. et al. // J. Therm. Anal. Calorim. 2017. V. 130. P. 1125. https://doi.org/10.1007/s10973-017-6493-z
- Drebushchak V.A., Isaenko L.I., Lobanov S.I. et al. // J. Therm. Anal. Calorim. 2017. V. 129. P. 103. https://doi.org/10.1007/s10973-017-6176-9
- Tkachev E.N., Matskevich N.I., Samoshkin D.A. et al. // Phys. B: Cond. Matter. 2021. V. 612. P. 412880. https://doi.org/10.1016/j.physb.2021.412880
- Khan A., Khan S., Kim H.J. et al // Optik. 2021. V. 242. P. 167035. https://doi.org/10.1016/j.ijleo.2021.167035
- Glushko V.P. Termicheskie Konstanty Veshchestv (Thermal Constants of Substances), Moscow: VINITI, 1965–1982. № 1–10.
- O’Hare P.A.G., Hoekstra H.R. // J. Chem. Thermodyn. 1973. V. 5. P. 851. https://doi.org/10.1016/S0021-9614(73)80047-3
- Musikhin A.E., Naumov V.N., Bespyatov M.A. et al. // J. Alloys Compd. 2015. V. 639. P. 145. https://doi.org/10.1016/j.jallcom.2015.03.159
- Orborne D.W., Flotov H.E., Hoekstra H.R. // J. Chem. Thermodyn. 1974. V. 6. P. 179. https://doi.org/10.1016/0021-9614(74)90260-2
 
				
			 
						 
						 
						 
						 
					

 
  
  
  电邮这篇文章
			电邮这篇文章 
 开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅或者付费存取
		                                							订阅或者付费存取
		                                					


