SYNTHESIS AND THERMODYNAMIC PROPERTIES OF ERBIUM TITANATE

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Erbium titanate was synthesized by co-precipitation of erbium and titanium hydroxides followed by high-temperature annealing. The temperature intervals of the sequence of formation of pyrochlore-type crystal structure were determined. Measurements of the isobaric heat capacity of erbium titanate in the range of 2-1870 K were carried out by relaxation, adiabatic and differential scanning calorimetry methods. On the basis of smoothed values of heat capacity, entropy and enthalpy increment in the region 0-1900 K were calculated, the contribution of Schottky anomaly at temperatures up to 300 K was evaluated, and the Gibbs energy of erbium titanate formation at 298.15 K was calculated.

作者简介

A. Guskov

Kurnakov Institute General and Inorganic Chemistry of the Russian Academy of Sciences

Moscow, Russia

P. Gagarin

Kurnakov Institute General and Inorganic Chemistry of the Russian Academy of Sciences

Moscow, Russia

V. Guskov

Kurnakov Institute General and Inorganic Chemistry of the Russian Academy of Sciences

Email: guskov@igic.ras.ru
Moscow, Russia

K. Gavrichev

Kurnakov Institute General and Inorganic Chemistry of the Russian Academy of Sciences

Moscow, Russia

参考

  1. Тимофеев Н.И., Салибеков Г.Е., Романович И.В. // Изв. АН СССР. Неорган. материалы. 1971. Т. 7. С. 890.
  2. Brixner L.H. // Inorg. Chem. 1964. V. 3. P. 1065.
  3. Щербакова Л.Г., Мамсурова Л.Г., Суханова Г.Е. // Успехи химии. 1979. Т. 48. С. 423.
  4. Комиссарова Л.Н., Шацкий В.М., Пушкина Г.Я. и др. // Соединения редкоземельных элементов. Карбонаты, оксалаты, нитраты, титанаты. М.: Наука, 1984. 235 с.
  5. Li Q.J., Xu L.M., Fan C. et al. // J. Cryst. Growth. V. 377. P. 96. https://doi.org/10.1016/ j.jcrysgro.2013.04.048
  6. Vlaskova K., Proschek P., Pospsil J., Klicpera M. // J. Cryst. Growth. 2020. V. 546. P. 125783. https://doi.org/10.1016/j.jcrysgro.2020.125783
  7. Ершова Л.М., Игнатьев Б.В., Кусалова Л.И. и др. // Изв. АН СССР. Неорган. материалы. 1977. Т. 13. С. 2042.
  8. Farmer J.M., Boather L.A., Chakoumakos B.C. et al. // J. Alloys Compd. 2014. V. 605. P. 63. https://doi.org/10.1016./j.jallcom.2014.03.153
  9. Blote H.W.J., Wielinga R.F., Huiskamp W.J. // Physica. 1969. V. 43. P. 549. https://doi.org/10.1016/ 0031-8914(69)90187-6
  10. Greedan J.E. // J. Alloys Compd. 2006. V. 408–412. P. 444. https://doi.org/10.1016./ j.jallcom.2004.12.084
  11. Ben Amor N., Bejar M., Hussein M. et al. // J. Supercond. Nov. Magn. 2012. V. 25. P. 035. https://doi.org/10.1007/s10948-011-1344-9
  12. Champion J.D.M., Harris M.J., Holdsworth P.C.W. et al. // Phys. Rev. B. 2003. V. 68. P. 020401. https://doi.org/10.1103/physrevb.68.020401
  13. Bonville P., Petit S., Mirebeau I. et al. // J. Phys.: Condens. Matter. 2013. V. 25. P. 275601. https://doi.org/10.1088/0953-8984/25/27/275601
  14. Oitmaa J., Singh R.R.P., Javanparast B. et al. // Phys. Rev. B. 2013. V. 88. P. 220404. https://doi.org/10.1103/PhysRevB.88.220404
  15. Dalmas de Reotier P., Yaouanc A., Chapuis Y. et al. // Phys. Rev. B. 2012. V. 86. P. 104424. https://doi.org/10.1103/physrevb.86.104424
  16. Ruff J.P.C., Clancy J.P., While M.A. et al. // Phys. Rev. Lett. 2008. V. 101. P. 147205. https://doi.org/10.1103/PhysRevLett.101.147205
  17. Wolf B., Tusch U., Dorschug S. et al. // J. Appl. Phys. 2016. V. 120№14. P. 142112. https://doi.org/10.1063/1.4961708
  18. Zhang L., Zhang W., Zhu J. et al. // J. Alloys Compd. 2009. V. 480. P. L45. https://doi.org/10.1016/j.jallcom.2009.02.146
  19. Lumpkin G.R. // J. Nucl. Mater. 2001. V. 289. P. 136.
  20. Weber W.J., Ewing R.C. // Science. 2000. V. 289. №5487. P. 2051. https://doi.org/10.1126/science.289.5487.205
  21. Teng Z., Tan Y., Zeng S. et al. // J. Eur. Ceram Soc. 2021. V. 41. P. 3614. https://doi.org/10.1016/jeurceramoc.202101.013
  22. Guo H., Zhang K., Li Y. // Ceram. Int. 2024. V. 50. P. 21859. https://doi.org/10.1016/j.ceramint.2024.03298
  23. Popov V.V., Menushenkov A.P., Yastrebtsev A.A. et al. // Ceram. Int. 2024. V. 50. P. 5319. https://doi.org/10.1016/j.ceramint.2023.11.283
  24. Chung C.-K., O’Quinn, NeuefeindJ.C. et al. // Acta Mater. 2019. V. 181. P. 309. https://doi.org/j.actamat.2019.09.022
  25. Helean K.B., Ushakov S.V., Brown C.E. et al. // J. Solid State Chem. 2004. V. 177. P. 1858. https://doi.org/j.jssc.2004.01.009
  26. Резницкий Л.А. // Неорган. материалы. 1993. Т. 29. С. 1310.
  27. Bissengaliyeva M.R., Bespyatov M.A., Gogol D.B. et al. // J. Chem. Eng. Data. 2022. V. 67. P. 2059. https://doi.org/10.1021/acs.jced.2c00050
  28. Denisova L.T., Izotov A.D., Kargin Y.F. et al. // Dokl. Phys. Chem. 2017. V. 472.№2. P. 139. https://doi.org/10.1134/S0012501617080012
  29. Rosen P.F., Woodfield B.F. // J. Chem. Thermodyn. 2020. V. 141. P. 105974. https://doi.org/10.1016/j.jct.2019.105974
  30. Sabbah R., Xu-wu A., Chickos J.S. et al. // Thermochim. Acta. 1999. V. 331. P. 93. https://doi.org/10.1016/S0040-6031(99)00009-X
  31. Prohaska T., Irrgeher J., Benefield J. et al. // Pure Appl. Chem. 2022. V. 94.№5. P. 573. https://doi.org/10.1515/pac-2019-0603
  32. Гуськов В.Н., Гавричев К.С., Гагарин П.Г., Гуськов А.В. //Журн. неорган. химии. 2019. Т. 64. С. 1072. https://doi.org/10.1134/S0044457X19100040
  33. Guskov A.V., Gagarin P.G., Guskov V.N. et al. // Ceram. Int. 2021. V. 47. P. 28004. https://doi.org/10.1016/j.ceramint.2021.06.125
  34. Шляхтина А.В., Кнотько А.В., Ларина Л.Л. и др. // Неорган. материалы. 2004. Т. 40. С. 1495.
  35. Knop O., Brisse F., Castelliz L. // Can. J. Chem. 2011. V. 43. P. 2812. https://doi.org/10.1139/v65-392
  36. Wang Q., Ghasemi A., Scheie A. et al. // Cryst. Eng. Comm. 2019. V. 21. P. 703. https://doi.org/10.1039/c8ce01885e
  37. Voskov A.L., Kutsenok I.B., Voronin G.F. // Calphad. 2018. V. 61. P. 50. https://doi.org/10.1016/ j.calphad.2018.02.001
  38. Voronin G.F., Kutsenok I.B. // J. Chem. Eng. Data. 2013. V. 58. P. 2083. https://doi.org/10.1021/ je400316m
  39. Konings R.J.M., Benes O., Kovacs A. et al. // J. Phys. Chem. Ref. Data. 2014. V. 4. P. 013101. https://doi.org/10.1063/1.4825256
  40. Chase M.W., Ir. NIST-JANAF Thermochemical Tables. Four Edition. Monograph № 9, Part I, II. Washington DC, 1998. 1963 p.
  41. Tari A. The specific heat of matter at low temperatures. London, Imperial College Press, 2003. Р. 211. https://doi.org/10.1142/9781860949395_0006
  42. Westrum E.F. Jr. // J. Therm. Anal. 1985. V. 30. P. 1209. https://doi.org/10.1007/BF01914288
  43. Bissengalieva M.R., Knyazev A.V., Bespyatov M.A. et al. // J. Chem. Thermodyn. 2022. V. 165. P. 106646. https://doi.org/10.1016/j.jct.2021.103346
  44. Глушко В.П. Термические константы веществ. Справочник. М., 1965–1982. https: //www.chem.msu.su/cgibin/tkv.pl?show=welcome.html&_ga=2.137226480.1380683462.17150713231284717817.1617178349 erbiumerbium

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024