INFLUENCE OF THE STRUCTURE OF PHOSPHORYL- AND CARBONYL CONTAINING PODANDS ON THE EXTRACTION OF LANTHANOIDS(III) FROM NITRIC ACID SOLUTIONS IN THE PRESENCE OF AN IONIC LIQUID -1-BUTYL-3-METHYLIMIDAZOLIUM BIS[(TRIFLUOROMETHYL)SULFONYL]IMIDE
- Authors: Turanov A.N.1, Karandashev V.K.2, Kharlamov A.V.3, Bondarenko N.A.4
-
Affiliations:
- Osipyan Institute of Solid State Physics RAS
- Institute of Microelectronics Technology and High Purity Materials RAS
- LLC “VODECO”
- National Research Center "Kurchatov Institute"
- Issue: Vol 69, No 11 (2024)
- Pages: 2266-2273
- Section: ФИЗИКОХИМИЯ РАСТВОРОВ
- URL: https://ruspoj.com/0044-457X/article/view/676621
- DOI: https://doi.org/10.31857/S0044457X24110103
- EDN: https://elibrary.ru/JKNLZD
- ID: 676621
Cite item
Abstract
The interphase distribution of lanthanoids(III) ions between aqueous solutions of HNO3 and solutions of tetrabutyldiglisolamide Bu2C(O)CH2OCH2C(O)NBu2(1), compounds R2P(O)CH2OCH2C(O)NBu2R = Bu (2), R = Ph (3) and phosphoryl-containing podands R2P(O)CH2OCH2P(O)R12R = R1= Bu (4); R = Bu, R1= Ph (5); R = R1= Ph (6)in 1,2-dichloroethane and ionic liquid - 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide has been studied. It has been established that the extraction of metal ions increases significantly in the presence of ionic liquids in the organic phase. The stoichiometry of the extracted complexes was determined, and the influence of the concentration of HNO3 in the aqueous phase and the structure of the extractant on the efficiency of extraction of metal ions into the organic phase was considered.
About the authors
A. N. Turanov
Osipyan Institute of Solid State Physics RASChernogolovka, Russia
V. K. Karandashev
Institute of Microelectronics Technology and High Purity Materials RAS
Email: karan@iptm.ru
Chernogolovka, Russia
A. V. Kharlamov
LLC “VODECO”Moscow, Russia
N. A. Bondarenko
National Research Center "Kurchatov Institute"Moscow, Russia
References
- ChakoumakosB.C. // J. Solid State Chem. 1984.V. 53. P. 120. https://doi.org/10.1016/0022-4596(84)90234-2
- Yamaura J.I., Yonezawa S., Muraoka Y. // J. Solid State Chem. 2006. V. 179. P. 336. https://doi.org/10.1016/j.jssc.2005.10.039
- Schwertmann L., Grunert A., Pougin A. et al. // Adv. Funct. Mater. 2015. V. 25. P. 905. https://doi.org/10.1002/adfm.201403092
- Jitta R.R., Gundeboina R., Veldurthi N.K. et al. // J. Chem. Technol. Biotechnol. 2015. V. 90. P. 1937. https://doi.org/10.1002/jctb.4745
- Shannon M.A., Bohn P.W., Elimelech M. et al. // Nature Mater. 2008. V. 452. P. 301. https://doi.org/10.1038/nature06599
- Jayaraman V., Mani A. // Sep. Purif. Technol. 2020. V. 235. P. 116242. https://doi.org/10.1016/j.seppur.2019.116242
- Long Z., Li Q.,Wei T. et al. // J. Hazard Mater. 2020. V. 395. P. 122599. https://doi.org/10.1016/j.jhazmat.2020.122599
- Semenycheva L., Chasova V., Matkivskaya J. et al. // J. Inorg. Organomet. Polym. 2021. V. 31. P. 3572. https://doi.org/10.1007/s10904-021-02054-6
- Zuarez-Chamba M., Rajendran S., Herrera-Robledo M. et al. // Environ. Res. 2022. V. 209. P. 112834. https://doi.org/10.1016/j.envres.2022.112834
- Guje R., Ravi G., Palla S. et al. // Mater. Sci. Eng. B. 2015. V. 198. P. 1. https://doi.org/10.1016/j.mseb.2015.03.010
- Sulaeman U., Yin S., Sato T. // Appl. Catal. B. 2011. V. 105. P. 206. https://doi.org/10.1016/j.apcatb.2011.04.017
- Ohgushi K., Yamaura J., Ichihara M. et al. // Phys. Rev. B: Condens. Matter. 2011. V. 83. P. 125103. https://doi.org/10.1103/PhysRevB.83.125103
- Kaviyarasu K., Magdalane C.M., Jayakumar D. et al. // J. King Saud Univ. Sci. 2020. V. 32. P. 1516. https://doi.org/10.1016/j.jksus.2019.12.006
- Varlamova L.A., Ignatov S.K., Fukina D.G. et al. // J. Phys. Chem. C. 2018. V. 122. P. 24907. https://doi.org/10.1021/acs.jpcc.8b07117
- Gorshkov A.P., Mazhukina K.A., Volkova N.S. et al. // J. Solid State Chem. 2022. V. 310. P. 123083. https://doi.org/10.1016/j.jssc.2022.123083
- Fukina D.G., Shotina V.A., Boryakov A.V. et al. // ChemPhotoChem. 2023. V. 7. P. e202300072. https://doi.org/10.1002/cptc.202300072
- Fukina D.G., Koryagin A.V., Titaev D.N. et al. // Eur. J. Inorg. Chem. 2022. V. 2022. P. e202200371. https://doi.org/10.1002/ejic.202200371
- Fukina D.G., Koryagin A.V., Koroleva A.V. et al. // J. Solid State Chem. 2021. V. 300. P. 122235. https://doi.org/10.1016/j.jssc.2021.122235
- Fukina D.G., Suleimanov E.V., Fukin G.K. et al. // J. Solid State Chem. 2020. V. 286. P. 121267. https://doi.org/10.1016/j.jssc.2020.121267
- Gorshkov A.P., Mazhukina K.A., Volkova N.S. et al. // J. Solid State Chem. 2022. V. 310. P. 123083. https://doi.org/10.1016/j.jssc.2022.123083
- Fukina D.G., Suleimanov E.V., Boryakov A.V. et al. // Inorg. Chem. 2020. V. 59. P. 14118. https://doi.org/10.1021/acs.inorgchem.0c01895
- Пятериков Е.А., Петьков В.И., Фукина Д.Г. и др. // Журн. неорган. химии. 2023. Т. 68. С. 1388. https://doi.org/10.31857/S0044457X23600482
- Мацкевич Н.И., Шлегель В.Н., Григорьева В.Д. и др. //Журн. неорган. химии. 2022. Т. 67. С. 1373. https://doi.org/10.31857/S0044457X22100579
- Markin A.V., Smirnova N.N., Fukina D.G. et al. // J. Chem. Thermodyn. 2021. V. 160. P. 106492. https://doi.org/10.1016/j.jct.2021.106492
- Varushchenko R.M., Druzhinina A.I., Sorkin E.L. // J. Chem. Thermodyn. 1997. V. 29. P. 623. https://doi.org/10.1006/jcht.1996.0173
- Sabbah R., Xu-wu A., Chickos J.S. et al. // Thermochim. Acta. 1999. V. 331. P. 93. https://doi.org/10.1016/S0040-6031(99)00009-X
- Hohne G.W.H., Hemminger W.F., Flammersheim H.-J. Differential scanning calorimetr. New York: Springer-Verlag Berlin Heidelberg, 2003. https://doi.org/10.1007/978-3-662-06710-9
- Drebushchak V.A. // J. Therm. Anal. Calorim. 2005. V. 79. P. 213. https://doi.org/10.1007/s10973-004-0586-1.
- Della Gatta G., Richardson M.J., Sarge S.M. et al. // Pure Appl. Chem. 2006. V. 78. P. 1455. https://doi.org/10.1351/pac200678071455
- Lazarev V.B., Izotov A.D., Gavrichev K.S. et al. // Thermochim. Acta. 1995. V. 269/270. P. 109. https://doi.org/10.1016/0040-6031(95)02529-4
- Тарасов В.В. //Журн. физ. химии. 1950. Т. 24.№1. С. 111.
- Lebedev B.V. // Thermochim. Acta. 1997. V. 297. P. 143.
- McCullough J.P., Scott D.W. Calorimetry of Nonreacting Systems. London: Butterworth, 1968.
Supplementary files
