Sensory properties of h-WO3 doped with Co2+ and Fe3+ cations in relation to toxic gases

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The sensory properties of solid solutions of h-CoxWO3 (0 ≤ x ≤ 0.09) and h-W1–xFexO3 (0 ≤ x ≤ 0.06), as well as m-WO3, were studied in relation to various toxic gases at the maximum permissible concentrations in the air. Doping of h-WO3 with Co2+ or Fe3+ ions does not affect the sensitivity of the sensory response to CH3COCH3 and NH3, but leads to a decrease in the sensory signal relative to NO2. A comparative analysis of the sensory properties of tungsten trioxide of hexagonal and monoclinic crystallographic modification has been performed. When detecting CH3COCH3 and NH3, the sensitivity of h-WO3 is 1.5 and 1.3 times higher than that of m-WO3, respectively. The oxygen vacancy concentration and pore volume are key parameters that determine the higher sensitivity of m-WO3 to NO2 compared to h-WO3.

Full Text

Restricted Access

About the authors

N. V. Podval'naya

Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: podnat@inbox.ru
Russian Federation, Pervomaiskaya str., 91, Yekaterinburg, 620990

A. V. Marikutsa

Lomonosov Moscow State University

Email: podnat@inbox.ru

Faculty of Chemistry

Russian Federation, Leninskie Gory, 1–3, Moscow, 119234

G. S. Zakharova

Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences

Email: podnat@inbox.ru
Russian Federation, Pervomaiskaya str., 91, Yekaterinburg, 620990

References

  1. Li. Z.J., Li H., Wu Z.L. et al. // Mater. Horiz. 2019. V. 6. № 3. P. 470. https://doi.org/10.1039/C8MH01365A
  2. Wang H., Lusting W.P., Li J. // Chem. Soc. Rev. 2018. V. 47. № 13. P. 4729. https://doi.org/10.1039/C7CS00885F
  3. Rezvani S.A., Soleymanpour A. // Microchem. J. 2019. V. 149. P. 104005. https://doi.org/10.1016/j.microc.2019.104005
  4. Yoon J.W., Lee J.H. // Lab. Chip. 2017. V. 17. № 21. P. 3537. https://doi.org/10.1039/C7LC00810D
  5. Broza Y.Y., Vishinkin R., Barash O. // Chem. Soc. Rev. 2018. V. 47. № 13. P. 4781. https://doi.org/10.1039/C8CS00317C
  6. Mustafa F., Andreescu S. // Foods. 2018. V. 7. № 10. P. 168. https://doi.org/10.3390/foods7100168
  7. Yunusa Z., Hamidon M.N., Kaiser A. et al. // Sensors Transducers. 2014. V. 168. № 4. P. 61. https://sensorsportal.com/HTML/ST_JOURNAL/PDF_Files/P_1957.pdf
  8. Xing J., Lin Z., Zhou J. et al. // Mater. Lett. 2019. V. 244. P. 182. https://doi.org/10.1016/j.matlet.2019.01.148
  9. Wetchakun K., Samerjai T., Tamaekong N. et al. // Sens. Actuators, B. 2011. V. 160. № 1. P. 580. http://dx.doi.org/10.1016/j.snb.2011.08.032
  10. Dey A. // Mater. Sci. Eng. B. 2018. V. 229. P. 206. https://doi.org/10.1016/j.mseb.2017.12.036
  11. Dong C., Zhao R., Yao L. et al. // J. Alloys Compd. 2019. V. 820. P. 153194. https://doi.org/10.1016/j.jallcom.2019.153194
  12. Huang Z.-F., Song J., Pan L. et al. // Adv. Mater. 2015. V. 27. № 36. P. 5309. https://doi.org/10.1002/adma.201501217
  13. Бушкова Т.М., Егорова А.А., Хорошилов А.В. и др. // Журн. неорган. химии. 2021. Т. 66. № 4. С. 470. https://doi.org/10.31857/S0044457X21040073
  14. Solarska R., Alexander B.D., Braun A. et al. // Electrochim. Acta. 2010. V. 55. № 26. P. 7780. https://doi.org/10.1016/j.electacta.2009.12.016
  15. Shannow R.D. // Acta Crystallogr., Sect. A. 1976. V. 32. № 5. P. 751. https://doi.org/10.1107/S0567739476001551
  16. Faisal M., Javed I., Tarid J. et al. // J. Alloys Compd. 2017. V. 728. P. 1329. https://doi.org/10.1016/j.jallcom.2017.08.234
  17. Gao H., Zhu L., Peng X. et al. // Appl. Surf. Sci. 2022. V. 592. 153310. P. 153310. https://doi.org/10.1016/j.apsusc.2022.153310
  18. Zhang Z., Hag M., Wen Z. et al. // Appl. Surf. Sci. 2018. V. 434. P. 891. http://dx.doi.org/10.1016/j.apsusc.2017.10.074
  19. Renitta А., Vijayalakshmi K. // Catal. Commun. 2016. V. 73. P. 58. https://doi.org/10.1016/j.catcom.2015.10.014
  20. Liu Z., Liu B., Xie W. et al. // Sens. Actuators, B. 2016. V. 235. P. 614. https://doi.org/10.1016/j.snb.2016.05.140
  21. Lim J.C., Jin C., Choi M.C. et al. // Ceram. Int. 2021. V. 47. № 15. P. 20956. https://doi.org/10.1016/j.ceramint.2021.04.095
  22. Jia Q., Ji H., Gao P. et al. // J. Mater. Sci - Mater Electron. 2015. V. 26. P. 5792. https://doi.org/10.1007/s10854-015-3138-5
  23. Hernandez-Uresti D.B., Sánchez-Martínez D., Martínez-de la Cruz A. // Ceram. Int. 2014. V. 40. № 3. P. 4767. https://doi.org/10.1016/j.ceramint.2013.09.022
  24. Zakharova G.S., Podval’naya N.V., Gorbunova T.I. et al. // J. Alloys Compd. 2023. V. 938. P. 168620. https://doi.org/10.1016/j.jallcom.2022.168620
  25. Захарова Г.С., Подвальная Н.В., Горбунова Т.И. и др. // Журн. неорган. химии. 2023. Т. 68. № 4. С. 435. https://doi.org/10.31857/S0044457X22602127
  26. Захарова Г.С., Подвальная Н.В., Горбунова Т.И. и др. // Журн. неорган. химии. 2024. Т. 69. № 8. С. 1117.
  27. Al-Kuhaili M.F., Drmosh Q.A. // Mater. Chem. Phys. 2022. V. 281. P. 125897. https://doi.org/10.1016/j.matchemphys.2022.125897
  28. Sing K.S.W., Everett D.H., Haul R.A.W. et al. // Pure Appl. Chem. 1985. V. 57. № 4. P. 603. https://doi.org/10.1351/pac198557040603
  29. Gillet M., Lemire C., Gillet E. et al. // Surf. Sci. 2003. V. 532–535. P. 519. https://doi.org/10.1016/S0039-6028(03)00477-1
  30. Zhang C., Luo Y., Xu J. et al. // Sens. Actuators, A: Phys. 2019. V. 289. P. 118. https://doi.org/10.1016/j.sna.2019.02.027
  31. Korotcenkov G., Han S.-D., Cho B.K. et al. // Crit. Rev. Solid State Mater. Sci. 2009. V. 34. № 1–2. P. 1. https://doi.org/10.1080/10408430902815725
  32. Marikutsa A., Rumyantseva M., Konstantinova E.A. et al. // Sensors. 2021. V. 21. № 7. P. 2554. https://doi.org/10.3390/s21072554
  33. Staerz A., Berthold C., Russ T. et al. // Sens. Actuators B Chem. 2016. V. 237. P. 54. http://dx.doi.org/10.1016/j.snb.2016.06.072
  34. Amiri V., Roshan H., Miraei A. // Sensors. 2020 V. 20. P. 3096. https://doi.org/10.3390/2Fs20113096
  35. Wang M., Wang Y., Li X. et al. // Sens. Actuators, B: Chem. 2020. V. 316. P. 128050. https://doi.org/10.1016/j.snb.2020.128050
  36. Фаттахова З.А., Вовкотруб Э.Г., Захарова Г.С. // Журн. неорган. химии. 2021. Т. 66. № 1. С. 41. https://doi.org/10.31857/S0044457X21010025

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Diffraction patterns of h-WO3 (1), h-Co0.09WO3 (2), h-W0.94Fe0.06O3 (3) (a) and m-WO3 (b) powders. The inset shows the position of the 002 peak. The vertical lines show the positions of the Bragg peaks for h-WO3 (ICDD 85-2460) and m-WO3 (ICDD 43-1035).

Download (206KB)
3. Fig. 2. SEM images of h-WO3 (a), h-Co0.09WO3 (b), h-W0.94Fe0.06O3 (c) powders and energy-dispersive X-ray microanalysis spectra of h-Co0.09WO3 (1) and h-W0.94Fe0.06O3 (2) (d) powders. The additional peak from carbon is due to the substrate used to fix the sample.

Download (581KB)
4. Fig. 3. SEM (a) and TEM images (b) of m-WO3 powder.

Download (346KB)
5. Fig. 4. TG, DSC and MS curves for h-Co0.09WO3 (a) and h-W0.94Fe0.06O3 (b).

Download (160KB)
6. Fig. 5. Sorption isotherms (a) and pore size distribution curves (b) of h-WO3 (1), h-Co0.09WO3 (2), h-W0.94Fe0.06O3 (3), m-WO3 (4) powders.Fig. 5. Sorption isotherms (a) and pore size distribution curves (b) of h-WO3 (1), h-Co0.09WO3 (2), h-W0.94Fe0.06O3 (3), m-WO3 (4) powders.

Download (175KB)
7. Rice. 6. Temperature dependences of resistance m-WO3, h-WO3, h-Co0.01WO3, h-Co0.03WO3, h-Co0.09WO3, h-W0.99Fe0.01O3, h-W0.97Fe0.03O3, h-W0.94Fe0.06O3.

Download (190KB)
8. Fig. 7. Dynamic response of sensors based on h-WO3, h-Co0.01WO3, h-Co0.03WO3, h-Co0.09WO3 in relation to different concentrations of acetone vapor at 250°C (a). Temperature dependence of the sensor response of m-WO3, h-WO3, h-Co0.01WO3, h-Co0.03WO3, h-Co0.09WO3, h-W0.99Fe0.01O3, h-W0.97Fe0.03O3, h-W0.94Fe0.06O3 with respect to 20 ppm acetone (b). Concentration dependence of the sensory response of m-WO3 and h-WO3 relative to CH3COCH3 at 300°C (c). Concentration dependence of the sensory response of m-WO3 and h-WO3 relative to NO2 at 100°C (d).

Download (264KB)
9. Rice. 8. Sensory response m-WO3, h-WO3, h-Co0.01WO3, h-Co0.03WO3, h-Co0.09WO3, h-W0.99Fe0.01O3, h-W0.97Fe0.03O3 h-W0.94Fe0.06O3 relative to NO2 at 100°C and reducing gases CO, NH3, H2S, CH3COCH3, CH3OH, CH2O, C6H6 at 300°C.

Download (239KB)
10. Fig. 9. Temperature dependences of the rate of ammonia desorption from the surface of samples (a) and temperature-programmed desorption (TPD) of ammonia, mass spectra of the desorbed gas from the surface of h-WO3 (b).

Download (186KB)

Copyright (c) 2025 Russian Academy of Sciences