Hydrophilic colloidal CdS particles: synthesis, stabilization mechanism, spectral, optical and photocatalytic properties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Hydrophilic colloidal particles of cadmium sulfide CdS were obtained by chemical condensation. To form a hydrophilic shell an approach based on the formation of a micelle-like structure around CdS nanoparticles was used. The CdS micelle were formed due to the formation of stable complexonates with ethylenediaminetetraacetic acid anions by surface cadmium atoms. The mechanism of aggregation stability of CdS nanoparticles in aqueous solutions was studied. Optical, spectral and photocatalytic properties of both nanostructured powders agglomerated from hydrophobic CdS nanoparticles and isolated hydrophilic CdS nanoparticles in a colloidal solution were investigated.

Full Text

Restricted Access

About the authors

N. S. Kozhevnikova

Institute of Solid State Chemistry UB RAS; Ural Federal University

Author for correspondence.
Email: kozhevnikova@ihim.uran.ru
Russian Federation, Ekaterinburg, 620990; Ekaterinburg, 620002

I. V. Baklanova

Institute of Solid State Chemistry UB RAS

Email: kozhevnikova@ihim.uran.ru
Russian Federation, Ekaterinburg, 620990

A. N. Enyashin

Institute of Solid State Chemistry UB RAS

Email: kozhevnikova@ihim.uran.ru
Russian Federation, Ekaterinburg, 620990

A. P. Tyutyunnik

Institute of Solid State Chemistry UB RAS

Email: kozhevnikova@ihim.uran.ru
Russian Federation, Ekaterinburg, 620990

A. A. Ushkov

Ural Federal University

Email: kozhevnikova@ihim.uran.ru
Russian Federation, Ekaterinburg, 620002

References

  1. Бричкин С.Б., Разумов В.Ф. // Успехи химии. 2016. Т. 85. № 12. С. 1297. https://doi.org/10.1070/RCR4656
  2. Pham D.T., Quan T., Mei S. et al. // Curr. Opin. Green Sust. Chem. 2022. V. 34. P. 100596. https://doi.org/10.1016/j.cogsc.2022.100596
  3. Mamiyev Z., Balayeva N.O. // Catalysts. 2022. V. 12. P. 1316. https://doi.org/10.3390/catal12111316
  4. Li Q., Li X., Yu J. // Int. Sci. Techn. 2020. V. 31. P. 313. https://doi.org/10.1016/B978-0-08-102890-2.00010-5
  5. Cheng L., Xiang Q., Liao Y. et al. // Energy Environ. Sci. 2018. V. 11. P. 1362. https://doi.org/10.1039/C7EE03640J
  6. Мусихин С.Ф., Александрова О.А., Лучинин В.В. и др. // Биотехносфера. 2012. № 5-6. С. 40. https://cyberleninka.ru/article/n/poluprovodnikovye-nanokristally-v-biomeditsinskih-issledovaniyah/viewer
  7. Han K., Yoon S., Chung W.J. // Int. J. Appl. Glass Sci. 2015. V. 6. № 2. P. 103. https://doi.org/10.1111/ijag.12115
  8. Смагин В.П., Давыдов Д.А., Унжакова Н.М. и др. // Журн. неорган. химии. 2015. Т. 60. № 12. С. 1734. https://doi.org/10.7868/S0044457X15120247
  9. Сумм Б.Д., Иванова Н.И. // Успехи химии. 2000. Т. 69. № 11. С. 995. https://doi.org/10.1070/RC2000v069n11ABEH000616
  10. Peyre V., Spalla O., Belloni L. et al. // J. Coll. Inter. Sci. 1997. V. 187. № 1. P. 184. https://doi.org/10.1006/jcis.1996.4692
  11. Singh N.B., Devi T.C., Singh T.D. // Russ. J. Inorg. Chem. 2023. V. 68. № 11. P. 1690. https://doi.org/10.1134/S0036023623601782
  12. Кожевникова Н.С., Ворох А.С., Ремпель А.А. // Журн. общей химии. 2010. Т. 80. № 2. С. 365. https://doi.org/10.1134/S1070363210030035
  13. Kraus W., Nolze G. // J. Appl. Crystallogr. 1996. V. 29. P. 301. https://doi.org/10.1107/S0021889895014920
  14. Ordejon P., Artacho E., Soler J.M. // Phys. Rev. B. 1996. V. 53. P. R10441. http://dx.doi.org/10.1103/PhysRevB.53.R10441
  15. García A., Papior N., Akhtar A. et al. // J. Chem. Phys. 2020. V. 152. P. 204108. https://doi.org/10.1063/5.0005077
  16. Zelaya-Angel O., de L. Castillo-Alvarado F., Avendailo-Lopez J. et al. // Solid State Commun. 1997. V. 104. № 3. P. 161. https://doi.org/10.1016/S0038-1098(97)00080-X
  17. Rossetti R., Nakahara S., Brus L.E. // J. Chem. Phys. 1983. V. 79. № 2. P. 1086. https://doi.org/10.1063/1.445834
  18. Nozik A.J., Williams F., Nenadovic M.T. et al. // J. Phys. Chem. 1985. V. 89. № 3. P. 397. https://doi.org/10.1021/j100249a004
  19. Weller H., Koch U., Gutierrez M. et al. // Phys. Chem. 1984. V. 88. P. 649. https://doi.org/10.1002/bbpc.19840880715
  20. Fojtik A., Weller H., Koch U. et al. // Phys. Chem. 1984. V. 88. № 10. P. 969. https://doi.org/10.1002/bbpc.19840881010
  21. Li W., Walther C.F.J., Kuc A. et al. // J. Chem. Theory Comput. 2013. V. 9. № 7. P. 2950. https://doi.org/10.1021/ct400235w
  22. Клюев В.Г., Фам Тхи Хан Мьен, Бездетко Ю.С. // Конденсированные среды и межфазные границы. 2014. T. 16. № 1. C. 27. https://journals.vsu.ru/kcmf/article/view/800
  23. Davydyuk H.Ye., Kevshyn A.H., Bozhko V.V. et al. // Semiconductors. 2009. V. 43. № 11. P. 1401. https://doi.org/10.1134/S1063782609110013
  24. Kulp B.A. // Phys. Rev. 1962. V. 125. P. 1865. https://doi.org/10.1103/PhysRev.125.1865
  25. Ramsden J.J., Grätzel M. // J. Chem. Soc. Faraday Trans. 1984. V. 80. № 1. P. 919. https://doi.org/10.1039/F19848000919
  26. Morozova N.K., Danilevich N.D., Kanakhin A.A. // Phys. Status Solidi C. 2010. V. 7. № 6. P. 1501. https://doi.org/10.1002/pssc.200983229
  27. Morozova N.K. New in the optics of II-VI-O compounds (New possibilities of optical diagnostics of single-crystal systems with defects). Riga: LAP LAMBERT Academic Publishing, 2021. 214 p.
  28. Морозова Н.К., Данилевич Н.Д. // Физика и техника полупроводников. 2010. Т. 44. № 4. С. 458. https://doi.org/10.1134/S1063782610040056
  29. Пугачевский М.А., Мамонтов В.А., Николаева С.Н. и др. // Изв. Юго-Западного гос. ун-та. Сер. Техника и технологии. 2021. Т. 11. № 2. С. 104.
  30. Дятлова Н.М., Темкина В.Я., Колпакова И.Д. Комплексоны. М.: Химия, 1970. 416 c.
  31. Nowack B. // Environ. Sci. Technol. 2002. V. 36. № 19. P. 4009. https://doi.org/10.1021/es025683s

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Distribution ion diagrams characterizing the molar fractions α of all forms of acids present in the solution, depending on pH: a – C10H16N2O8 (H4Y); b – H2S.

Download (136KB)
3. Scheme 1. Destruction of a colloidal solution of CdS

Download (101KB)
4. Fig. 2. X-ray diffraction spectra of CdS powder obtained after rapid coagulation of a stable colloidal solution.

Download (186KB)
5. Fig. 3. Electron micrographs (a) and results of elemental analysis (b) of CdS powder obtained after coagulation of the dispersed phase of the colloidal solution with a non-indifferent electrolyte.

Download (400KB)
6. Fig. 4. Morphological features of CdS before and after coagulation: a – TEM image of clusters of powder nanoparticles and CdS EG. The top image shows the EG shooting area of ​​the selected area of ​​CdS powder; the bottom image shows the ring EG with highlighted gray arcs indexed by ring reflections corresponding to the cubic CdS phase (JCPDS 42-1411). b – TEM images of clusters of colloidal particles deposited directly from the colloidal solution onto the supporting carbon grid.

Download (471KB)
7. Fig. 5. Raman spectra of a colloidal solution (a) and nanostructured CdS powder obtained after coagulation of the colloidal solution (b).

Download (94KB)
8. Scheme 2. Structure of a micelle of a colloidal solution of CdS

Download (104KB)
9. Fig. 6. Absorption spectra and graphical determination of the optical band gap Eg using the Tauc method for a colloidal solution (a) and CdS NPs after coagulation (b).

Download (168KB)
10. Fig. 7. Density of states (DS) for wurtzite-like CdS containing no defects (a), containing S vacancies (b) or substitutional impurity OS (c), DFT calculations.

Download (218KB)
11. Fig. 8. Visualization of luminescence (a) and luminescence spectrum (b) of a colloidal solution of CdS (lex = 440 nm).

Download (167KB)
12. Fig. 9. Results of photocatalytic decomposition of GC under the influence of blue light (λmax = 440–460 nm) in the presence of nanostructured CdS powder and colloidal CdS solution.

Download (164KB)

Copyright (c) 2025 Russian Academy of Sciences