Substitution of praseodymium for cadmium and lead in the Pr5Mo3O16+δ structure

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Solid solutions based on fluorite-like phase in systems Pr5–xMexMo3O16+δ, where Me = Cd, Pb, were obtained by solid-phase synthesis from metal oxides. The phase content after calcination at 1000°C was studied by X-ray diffraction, the substitution limits and the dependences of the unit cell parameter on the composition of the systems were determined. The parameters of the crystal structure of solid solutions were specified by the Rietveld method. The influence of magnesium oxide additives on the sinterability of cadmium-containing solid solutions has been established. Isomorphous substitution of praseodymium by lead and cadmium leads to a decrease in the conductivity value of the samples in the studied systems.

Full Text

Restricted Access

About the authors

А. О. Sidorenko

Donetsk State University

Email: chebyshev.konst@mail.ru
Russian Federation, Donetsk, 283001

Т. S. Berezhnaya

North-Caucasus Federal University

Email: chebyshev.konst@mail.ru
Russian Federation, Stavropol, 355017

L. V. Pasechnik

Donetsk State University

Email: chebyshev.konst@mail.ru
Russian Federation, Donetsk, 283001

I. Y. Ukleina

North-Caucasus Federal University

Email: chebyshev.konst@mail.ru
Russian Federation, Stavropol, 355017

A. V. Guseva

North-Caucasus Federal University

Email: chebyshev.konst@mail.ru
Russian Federation, Stavropol, 355017

K. А. Chebyshev

North-Caucasus Federal University

Author for correspondence.
Email: chebyshev.konst@mail.ru
Russian Federation, Stavropol, 355017

References

  1. Shlyakhtina A.V., Avdeev M., Lyskov N.V. // Dalton Trans. 2020. V. 49. P. 2833. https://doi.org/10.1039/C9DT04724G
  2. Shlyakhtina A.V., Lyskov N.V., Šalkus T. // Int. J. Hydrogen Energy. 2021. V. 46. P. 16965. https://doi.org/10.1016/J.IJHYDENE.2021.02.029
  3. Morkhova Ye.A., Orlova E.I., Kabanov A.A. // Solid State Ionics. 2023. V. 400. P. 116337. https://doi.org/10.1016/j.ssi.2023.116337
  4. Bazarova Zh.G., Subanakov A.K., Bazarov B.G. // J. Struct. Chem. 2022. V. 63. P. 1678. https://doi.org/10.1134/s1063774523601430
  5. Pautonnier A., Coste S., Barré M., Lacorre P. // Prog. Solid State Chem. 2023. V. 69. 100382. https://doi.org/10.1016/j.progsolidstchem.2022.100382
  6. Efremov V.A. // Russ. Chem. Rev. 1990. V. 59. P. 627. https://doi.org/10.1070/RC1990v059n07ABEH003547
  7. Shlyakhtina A.V., Lyskov N.V., Kolbanev I.V. // Russ. J. Electrochem. 2023. V. 59. P. 60. https://doi.org/10.1134/s1023193523010081
  8. Voronkova V.I., Kharitonova E.P., Belov D.A. // Solid State Ionics. 2012. V. 225. P. 654. https://doi.org/10.1016/j.ssi.2012.03.002
  9. Biendicho J.J., Playford H.Y., Rahman S.M.H. // Inorg. Chem. 2018. V. 57. № 12. P. 7025. https://doi.org/10.1021/acs.inorgchem.8b00734
  10. Tsai M., Greenblatt M., McCarroll W. // Chem. Mater. 1989. V. 1. № 2. P. 253. https://doi.org/10.1021/cm00002a017
  11. Qi S., Xie H., Huang Y. // Opt. Mater. Express. 2014. V. 4. № 2. P. 190. https://doi.org/10.1364/OME.4.001444
  12. Yu R., Fan A., Yuan M. // Opt. Mater. Express. 2016. V. 6. P. 3469. https://doi.org/10.1364/OME.6.002397
  13. Bin Deng, Yue Yang, Wensheng Chen // J. Mater. Sci. – Mater. Electron. 2022. V. 33. № 29. P. 23042. https://doi.org/10.1007/s10854-022-09071-2
  14. Коваль К.А., Голубович В.С., Бережная Т.С., Чебышев К.А. Химические проблемы современности / Донецк: ФГБОУ ВО “Донецкий государственный университет”, 2024. С. 130.
  15. Lyskov N.V., Kotova A.I., Petukhov D.I. // Russ. J. Electrochem. 2022. V. 58. P. 989. https://doi.org/10.1134/S102319352211009X
  16. Istomin S., Kotova A., Lyskov N. // Russ. J. Inorg. Chem. 2018. V. 63. P. 1291. https://doi.org/10.1134/S003602361810008X.
  17. Istomin S., Lyskov N., Mazo G. // Russ. Chem. Rev. 2021. V. 90. P. 644. https://doi.org/10.1070/RCR4979
  18. Lyu Y., Xie J., Wang D. // J. Mater. Sci. 2020. V. 55. P. 7184. https://doi.org/10.1007/s10853-020-04497-7.
  19. Yatoo M.A., Habib F., Malik A.H. // MRS Commun. 2023. V. 13. P. 378. https://doi.org/10.1557/s43579-023-00371-0
  20. Faurie J.P., Kohlmuller R. // Rev. Chim. Miner. 1971. V. 8. P. 241.
  21. Orlova E.I., Kharitonova E.P., Voronkova V.I. // Crystallogr. Rep. 2017. V. 62. P. 469. https://doi.org/10.11134/S1063774517030178
  22. Kaiyang Liu, Xi Wang, Pengxiang Gao // Ceram. Int. 2022. V. 48. P. 27360. https://doi.org/10.1016/j.ceramint.2022.05.186
  23. Kurtz R., Paulmann C., Bismayer U. // HASYLAB Annual Report. 2004. V. 1. P. 12812 http://hasyweb.desy.de/science/annual_reports/2004_report/part1/contrib/42/12812.pdf
  24. Antipin A.M., Sorokina N.I., Alekseeva O.A. // Acta Crystallogr., Sect. B: Struct. Sci. Cryst. Eng. Mater. 2015. V. 71. P. 186. https://doi.org/10.1107/S2052520615003315.
  25. Ardanova L., Chebyshev K., Ignatov A. // Key Eng. Mater. 2020. V. 865. P. 49. https://doi.org/10.4028/www.scientific.net/KEM.865.49
  26. Чебышев К.А., Игнатов А.В., Пасечник Л.В. // Вестник Донецкого национального университета. Серия А: Естествен. науки. 2021. № 1. С. 166.
  27. Shannon R.D. // Acta Crystallogr., Sect. A. 1976. V. 32. P. 751. https://doi.org/10.1107/S0567739476001551
  28. Chebyshev K.A., Ignatov A.V., Pasechnik L.V. // J. Chem. 2021. V. 2021. P. 5537048. https://doi.org/10.1155/2021/5537048.
  29. Ge’tman E.I., Chebyshev К.A., Ardanova L.I., Pasechnik L.V. // Solid State Phenom. 2015. V. 230. P. 45. https://doi.org/10.4028/www.scientific.net/SSP.230.45
  30. Antipin A., Alekseeva O., Sorokina N. // Crystallogr. Rep. 2015. V. 60. P. 640. https://doi.org/10.1134/S1063774515050028
  31. Zhang G.G., Fang Q.F., Wang X.P., Yi Z.G. // J. Phys.: Condens. Matter. 2003. V. 15. P. 4135. https://doi.org/10.1088/0953-8984/15/24/307

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Diffraction patterns of samples of the Pr5–xMxMo3O16+δ systems, where M = Pb (a), Cd (b), at 1000°C: x = 0 (1), 0.1 (2), 0.3 (3), 0.5 (4), 0.7 (5), 1.0 (6), 1.2 (7), 1.5 (8). Miller indices apply to solid solutions based on Pr5Mo3O16+δ (a) and CdMoO4 (b).

Download (251KB)
3. Fig. 2. Dependences of the unit cell parameter of the phase with the Pr5Mo3O16+δ structure on the composition of the Pr5–xMxMo3O16+δ systems: 1 – M = Pb, 2 – M = Cd, 3 – Pr4PbMo3O16 [20], 4 – Pr4CdMo3O16 [20].

Download (51KB)
4. Fig. 3. Electrical conductivity of samples of the Pr5–xPbxMo3O16+δ system (a): x = 0 (1), 0.1 (2), 0.3 (3), 0.5 (4), 0.7 (5), 1.0 (6). Dependences of the logarithm of electrical conductivity at 700°C (1) and activation energy (2) on the composition of the system (b).

Download (142KB)
5. Fig. 4. Electrical conductivity of samples of the Pr5–xCdxMo3O16+δ system (a): x = 0 (1), 0.1 (2), 0.3 (3), 0.5 (4), 0.7 (5), 1.0 (6). Dependences of the logarithm of electrical conductivity at 700°C (1) and activation energy (2) on the composition of the system (b).

Download (147KB)
6. Fig. S1. Dependences of the intensity of the reflection of the impurity phase at 31.3°2Θ in the Pr5–xPbxMo3O16+δ system (1) and the reflection (112) of the CdMoO4 phase (2) in the Pr5–xCdxMo3O16+δ system on the content of the divalent element.

Download (530KB)
7. Рис. S2. Дифрактограммы образцов системы Pr4.3Cd0.7Mo3O16+δ·yMgO (а): y = 0 (1), y = 0.025 (2), y = 0.05 (3), y = 0.075 (4), y = 0.1 (5). Зависимость относительной плотности образцов после спекания при 1000°С (б).

Download (195KB)
8. Supplementary materials
Download (235KB)
9. Supplementary materials
Download (233KB)

Copyright (c) 2025 Russian Academy of Sciences