Cryoprotectant based on a glass-forming aqueous solution of magnesium acetate

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For the first time a cryoprotectant based on glass-forming aqueous solution of magnesium acetate, a metal vital for the human body, was obtained and studied by DSC method. This cryoprotectant – Mg(CH3COO)2 ∙ 12H2O – surpasses the available analogues by the following parameters: it has a high glass-forming ability (it passes from the glassy state to the liquid state without crystallization), is non-toxic and easy to obtain. Its cryoprotective ability, proved on chicken egg white, does not depend on the rate of cooling and heating. It is shown that among glass-forming solutions of Mg(CH3COO)2–H2O system there are five more potential cryoprotectants and preservative for hypothermic storage of biological material. The molecular mechanism preventing damage and death of biological material placed in solutions of the Mg(CH3COO)2–H2O system favourable for cryopreservation has been established using the density functional theory method.

Full Text

Restricted Access

About the authors

I. A. Kirilenko

Kurnakov Institute of General and Inorganic Chemistry Russian Academy of Sciences

Author for correspondence.
Email: iakirilenko@mail.ru
Russian Federation, Leninskii prosp. 31, Moscow, 119991

E. G. Tarakanova

Kurnakov Institute of General and Inorganic Chemistry Russian Academy of Sciences

Email: iakirilenko@mail.ru
Russian Federation, Leninskii prosp. 31, Moscow, 119991

References

  1. Warner R.M., Brown K.S., Benson J.D. et. al. // Cryobiology. 2022. V. 108. P. 1. https://doi.org/10.1016/j.cryobiol.2022.09.002
  2. Best B.P. // Rejuvenation Research. 2015. V. 18. № 5. P. 422. https://doi.org/10.1089/rej.2014.1656
  3. Kostyaev A.A., Martusevich A.K., Andreev A.A. // Nauchnoe Obozrenie. Meditsinskie Nauki. 2016. № 6. P. 54. https://science-medicine.ru/en/article/view?id=944
  4. Morris J., Acton E. // Cryobiology. 2013. V. 66. P. 85. https://doi.org/10.1016/j.cryobiol.2012.11.007
  5. Elliott G.D., Wang S., Fuller B.J. // Cryobiology. 2017. V. 76. P. 74. https://doi.org/10.1016/j. cryobiol.2017.04.004
  6. Zinchenko A.V., Bobrova E.N. // Dopovidi Natsional'noi Akademii Nauk Ukraini. 2010. № 12. P. 166.
  7. Osei-Bempong C., Ghareeb A.E., Lako M. et. al. // Cryobiology. 2018. V. 84. P. 98. 10.1016/j.cryobiol.2018.07.008' target='_blank'>https://doi: 10.1016/j.cryobiol.2018.07.008
  8. Luyet B.J., Gehenio P.M. Life and death at low temperatures / Normandy: Biodinamica. 1940.
  9. Polge C., Smith A.U., Parkes A.S. // Nature. 1949. V. 164. № 10. P. 666. https://doi.org/10.1038/164666a0
  10. Rasmussen D.H., Mackenzie A.P. // Nature. 1968. V. 220. № 12. P. 1315. https://doi.org/10.1038/2201315a0
  11. Кириленко И.А. Водно-электролитные стеклообразующие системы / М.: Красанд, 2016.
  12. Hagg G.I. // J. Chem. Phys. 1935. № 3. P. 42. https://doi.org/10.1063/1.1749624
  13. Кобеко П.П. Аморфные вещества: Физико-химические свойства простых и высокомолекулярных аморфных тел. М. – Л.: изд-во АН СССР. 1952.
  14. Rawson H. Inorganic Glass-forming Systems / London N-Y: Acad. Press. 1967.
  15. Tammann. G. Der Glaszustand. Leipzig: Verlag Leop. Voss. 1933. https://doi.org/10.1002/ange.19330463312
  16. Аппен А.А. Химия стекла / Л.: Химия. 1974. С. 352.
  17. Дембовский С.А., Чечеткина Е.А. Стеклообразование / М.: Наука. 1990. С. 277.
  18. Kirilenko I.A., Tarakanova E.G., Mayorov A.V. et. al. // J. Non-Crystal. Solids. 2022. V. 594. 121825. https://doi.org/10.1016/j.jnoncrysol.2022.121825.
  19. Tarakanova E.G., Kirilenko I.A. // J. Non-Crystal. Solids. 2021. V. 573. 121130. https://doi.org/10.1016/j.jnoncrysol.2021.121130
  20. Майоров В.Д., Тараканова Е.Г., Майоров А.В., Кислина И.С. // Журн. структур. химии. 2022. Т. 63. № 10. 99312. https://doi.org/10.26902/JSC_id99312
  21. Tarakanova E.G., Yukhnevich G.V., Kislina I.S., Maiorov V.D. // Phys. Wave Phenom. 2020. V. 28. № 2. P. 168. https://doi.org/10.3103/S1541308X2002017X
  22. Kirilenko I.A. // Russ. J. Inorg. Chem. 2017. V. 62 № 14. P. 1819. https://doi.org/10.1134/S0036023617140042
  23. Кириленко И.А., Демина Л.И., Данилов В.П. // Журн. неорган. химии. 2019. Т. 64. № 10. С. 1089. https://doi.org/10.1134/S0044457X19100076
  24. Kirilenko I.A. // Russ. J. Inorg. Chem. 2018. V. 63. № 13. P. 1728. https://doi.org/10.1134/S0036023618130053
  25. Кириленко И.А., Демина Л.И. // Журн. неорган. химии. 2018. Т. 63. № 10. С. 1349. https://doi.org/10.1134/S0044457X18100100
  26. Панасюк Г.П., Лященко А.К., Азарова Л.А. и др. // Журн. неорган. химии. 2018. Т. 63. № 6. С. 796. https://doi.org/10.7868/S0044457X18060211
  27. Angell C.A., Sare E.J. // J. Chem. Phys. 1970. V. 52. № 3. P. 1058. https://doi.org/10.1063/1.1673099
  28. Angell С.A., Bressel R.D. // J. Phys. Chem. 1972. V. 76. № 22. P. 3244. https://doi.org/10.1021/j100666a023
  29. Angell C.A., Tucker J.C. // J. Phys. Chem. 1980. V. 84. № 3. P. 268. https://doi.org/10.1021/j100440a009
  30. Angell C.A. // Chem. Rev. 2002. V. 102. № 8. P. 2627. https://doi.org/10.1021/cr000689q
  31. Hodge I.M., Angell C.A. // J. Non-Crystal. Solids. 1976. V. 20. № 2. P. 299. https://doi.org/10.1016/0022-3093(76)90138-1
  32. Кириленко И.А., Демина Л.И., Данилов В.П. // Журн. неорган. химии. 2022. V. 67. № 11. С. 1554. https://doi.org/10.31857/S0044457X2270012X
  33. Кириленко И.А., Винокуров А.А., Данилов В.П. и др. // Журн. неорган. химии. 2020. Т. 65. № 7. С. 903. https://doi.org/10.31857/S0044457X20060082
  34. Saito K., Kinoshita Y., Kanno H. // Fertil. Steril. 1996. V. 65. № 6. P. 1210.
  35. Abeyrathne N.S., Lee H.Y., Ahn D.U. // Poultry Science 2013. V. 92. № 12. P. 3292.
  36. Frisch M.J., Trucks G.W., Schlegel H.B. et. al. Gaussian 09. Revision A.02 / Gaussian, Inc. Wallingford CT. 2009.
  37. Frisch M.J., Trucks G.W., Schlegel H.B. et. al. Gaussian 16, Revision С.01 / Gaussian, Inc., Wallingford CT. 2019.
  38. Silverstein K.A.T., Haymet A.D.J., Dill K.A. // J. Am. Chem. Soc. 2000. V. 122. № 33. P. 8037. https://doi.org/10.1021/ja000459t
  39. Бизунок С.Н., Свентицкий Е.Н. Вода в биологических системах и их компонентах / Л.: Изд-во ЛГУ. 1983.
  40. Жмакин А.И. // Успехи физ. наук. 2008. Т. 178. № 3. С. 243. https://doi.org/10.3367/UFNr.0178.200803b.0243
  41. Zhmakin A.I. Fundamentals of cryobiology / Berlin, Heidelberg: Springer-Verlag. 2009.
  42. Levy Y., Onuchic J.N. // Annual Rev. Biophys. 2006. V. 35. P. 389. https://doi.org/10.1146/annurev.biophys.35.040405.102134
  43. Mazur P. // Science. 1970. V. 168. № 3934. P. 939. https://doi.org/10.1126/science.168.3934.939

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. DSC thermogram of a sample of Mg(CH3COO)2 ∙ 17H2O composition that is unstable to crystallization.

Download (42KB)
3. Fig. 2. DSC thermograms: 1 – chicken egg white, 2 – matrix Mg(CH3COO)2∙12H2O, 3 – matrix +10 wt. % chicken egg white, 4 – matrix +30 wt. % chicken egg white.

Download (56KB)
4. Fig. 3. Structure of complexes Mg2+ ∙ 6H2O (a) and Mg2+ ∙ 18H2O (b).

Download (95KB)
5. Fig. 4. Dependence of the energy of the hydrogen bond between the n-th and (n-1)-th hydration shells of the Mg2+ ion on n (1). The value of the energy of the hydrogen bond in water (2).

Download (49KB)
6. Fig. 5. Structure of fragments of polymer chains formed in aqueous solutions of magnesium acetate of compositions 1:6 (a) and 1:11 (b).

Download (149KB)

Copyright (c) 2025 Russian Academy of Sciences