ХРОМОФОРЫ ДИИМИН-NiII-КАТЕХОЛАТ НА ОСНОВЕ ЛИГАНДНЫХ СИСТЕМ ФЕНАНТРОЛИНОВОГО РЯДА: МОЛЕКУЛЯРНОЕ СТРОЕНИЕ, ПЕРЕНОС ЗАРЯДА ЛИГАНД-ЛИГАНД, ТЕРМИЧЕСКОЕ ПОВЕДЕНИЕ
- Авторы: Пашанова К.И.1, Якушев И.А.2, Лазарев Н.М.1, Золотухин А.А.1, Ковылина Т.А.1, Климашевская А.В.1, Арсеньев М.В.1, Сулимова О.В.2, Дороватовский П.В.3, Пискунов А.В.1
-
Учреждения:
- Институт металлоорганической химии им. Г.А. Разуваева РАН
- Институт общей и неорганической химии им. Н.С. Курнакова РАН
- Национальный исследовательский центр “Курчатовский институт”
- Выпуск: Том 69, № 11 (2024)
- Страницы: 2199-2216
- Раздел: КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ
- URL: https://ruspoj.com/0044-457X/article/view/676613
- DOI: https://doi.org/10.31857/S0044457X24110053
- EDN: https://elibrary.ru/JMBCVV
- ID: 676613
Цитировать
Аннотация
Ключевые слова
Об авторах
К. И. Пашанова
Институт металлоорганической химии им. Г.А. Разуваева РАН
Email: pashanova@iomc.ras.ru
Нижний Новгород, Россия
И. А. Якушев
Институт общей и неорганической химии им. Н.С. Курнакова РАНМосква, Россия
Н. М. Лазарев
Институт металлоорганической химии им. Г.А. Разуваева РАННижний Новгород, Россия
А. А. Золотухин
Институт металлоорганической химии им. Г.А. Разуваева РАННижний Новгород, Россия
Т. А. Ковылина
Институт металлоорганической химии им. Г.А. Разуваева РАННижний Новгород, Россия
А. В. Климашевская
Институт металлоорганической химии им. Г.А. Разуваева РАННижний Новгород, Россия
М. В. Арсеньев
Институт металлоорганической химии им. Г.А. Разуваева РАННижний Новгород, Россия
О. В. Сулимова
Институт общей и неорганической химии им. Н.С. Курнакова РАНМосква, Россия
П. В. Дороватовский
Национальный исследовательский центр “Курчатовский институт”Москва, Россия
А. В. Пискунов
Институт металлоорганической химии им. Г.А. Разуваева РАННижний Новгород, Россия
Список литературы
- Weil T., Vosch T., Hofkens J. et al. // Angew. Chem. Int. Ed. 2010. V. 49.№48. P. 9068. https://doi.org/10.1002/anie.200902532
- Christiansen P.L., Sorensen M.P., Scott A.C. Nonlinear Science at the Dawn of the 21st Century. Berlin: Springer Berlin, 2000. https://doi.org/10.1007/3-540-46629-0_9
- Mitschke F. Fiber optics. Berlin: Springer Berlin, 2016. https://doi.org/10.1007/978-3-662-52764-1
- Curreli S., Deplano P., Faulmann C. et al. // Inorg. Chem. 2004. V. 43.№16. P. 5069. https://doi.org/10.1021/ic0496469
- Resch-Genger U., Grabolle M., Cavaliere-Jaricot S. et al. // Nat. Methods. 2008. V. 5. P. 763. https://doi.org/10.1038/nmeth.1248
- Yam V.W.-W., Au V.K.-M., Leung S.Y.-L. // Chem. Rev. 2015. V. 115.№15. P. 7589. https://doi.org/10.1021/acs.chemrev.5b00074
- Baggaley E., Weinstein J.A., Williams J.G. // Coord. Chem. Rev. 2012. V. 256.№15–16. P. 1762. https://doi.org/10.1016/j.ccr.2012.03.018
- Baise A., Teucher I., Labes M. // Appl. Phys. Lett. 1972. V. 21. P. 142. https://doi.org/10.1063/1.1654317
- Krebs P., Sackmann E., Schwarz J. // Chem. Phys. Lett. 1971. V. 8.№5. P. 417. https://doi.org/10.1016/0009-2614(71)80416-5
- Reinders A., Verlinden P., Van Sark W. et al. Photovoltaic Solar Energy. From Fundamentals to Applications. Hoboken: John Wiley & Sons, 2017.
- Giribabu L., Kanaparthi R.K., Velkannan V. // TCR. 2012. V. 12.№3. P. 306. https://doi.org/10.1002/tcr.201100044
- Sekar N., Gehlot V.Y. // Resonance. 2010. V. 15. P. 819. https://doi.org/10.1007/s12045-010-0091-8
- Tyagi V., Rahim N.A.A., Rahim N.A. et al. // Renew. Sustain. Energy Rev. 2013. V. 20. P. 443. https://doi.org/10.1016/j.rser.2012.09.028
- Смирнова Е.А., Беседина М.А., Карушев М.П. // Журн. физ. химии. 2016. Т. 90.№5. С. 808.
- Ward M.D. // J. Solid State Electrochem. 2005. V. 9. P. 778. https://doi.org/10.1007/s10008-005-0668-4
- Bange K., Gambke T. // Adv. Mater. 1990. V. 2.№1. P. 10. https://doi.org/10.1002/adma.19900020103
- Mortimer R.J. // Chem. Soc. Rev. 1997. V. 26. P. 147. https://doi.org/10.1039/CS9972600147
- Nejad M.A.F., Ranjbar S., Parolo C. et al. // Mater. Today. 2021. V. 50. P. 476. https://doi.org/10.1016/j.mattod.2021.06.015
- Griffiths J. Colour and Constitution of Organic Molecules. Cambridge: Acad. Press, 1976.
- Griffiths J. // Color. Technol. 1981. V. 11.№1. P. 37. https://doi.org/10.1111/j.1478-4408.1981.tb03714.x
- Waring D.R., Hallas G. The Chemistry and Application of Dyes. Boston: Springer, 1990.
- Kramer W.W., Cameron L.A., Zarkesh R.A. et al. // Inorg. Chem. 2014. V. 53.№16. P. 8825. https://doi.org/10.1021/ic5017214
- Bubnov M.P., Teplova I.A., Druzhkov N.O. et al. // Chem. Sci. J. 2015. V. 127. P. 527. https://doi.org/10.1007/s12039-015-0805-2
- Pashanova K.I., Bitkina V.O., Yakushev I.A. et al. // Molecules. 2021. V. 26.№15. P. 4622. https://doi.org/10.3390/molecules26154622
- Pashanova K.I., Ershova I.V., Trofimova O.Yu. et al. // Molecules. 2022. V. 27.№23. P. 8175. https://doi.org/10.3390/molecules27238175
- Pashanova K.I., Ershova I.V., Yakushev I.A. et al. // Polyhedron. 2023. V. 243. P. 116527. https://doi.org/10.1016/j.poly.2023.116527
- Cameron L.A., Ziller J.W., Heyduk A.F. // Chem. Sci. 2016. V. 7. P. 1807. https://doi.org/10.1039/C5SC02703A
- Yamada S., Matsumoto T., Chang H.-C. // Chem. Eur. J. 2019. V. 25.№35. P. 8268. https://doi.org/10.1002/chem.201900172
- Romashev N.F., Abramov P.A., Bakaev I.V. et al. // Inorg. Chem. 2022. V. 61.№4. P. 2105. https://doi.org/10.1021/acs.inorgchem.1c03314
- BaniKhaled M.O., Becker J.D., Koppang M. et al. // Cryst. Growth Des. 2016. V. 16.№4. P. 1869. https://doi.org/10.1021/acs.cgd.5b01291
- Deibel N., Schweinfurth D., Fiedler J. et al. // Dalton Trans. 2011. V. 40.№38. P. 9925. https://doi.org/10.1039/C1DT10856E
- Ghosh P., Begum A., Herebian D. et al. // Angew. Chem. Int. Ed. 2003. V. 42.№5. P. 563. https://doi.org/10.1002/anie.200390162
- Tahara K., Ashihara Y., Higashino T. et al. // Dalton Trans. 2019. V. 48.№28. P. 7367. https://doi.org/10.1039/C8DT05057K
- Archer S., Weinstein J.A. // Coord. Chem. Rev. 2012. V. 256.№21–22. P. 2530. https://doi.org/10.1016/j.ccr.2012.07.010
- Sobottka S., No.ler M., Ostericher A.L. et al. // Chem. Eur. J. 2020. V. 26.№6. P. 1314. https://doi.org/10.1002/chem.201903700
- Brown D.G., Hughes W.J. // Z. Naturforsch B. 1979. V. 34.№10. P. 1408. https://doi.org/10.1515/znb-1979-1012
- Brown D.G., Hughes W.J., Knerr G. // Inorg. Chim. Acta. 1980. V. 46. P. 123. https://doi.org/10.1016/S0020-1693(00)84179-1
- Brown D.G., Reinprecht J.T., Vogel G.C. // Inorg. Nucl. Chem. Lett. 1976. V. 12.№5. P. 399. https://doi.org/10.1016/0020-1650(76)80050-5
- Buchanan R.M., Wilson-Blumenberg C., Trapp C. et al. // Inorg. Chem. 1986. V. 25.№17. P. 3070. https://doi.org/10.1021/ic00237a029
- Трофимова О.Ю., Пашанова К.И., Ершова И.В. и др. // Журн. неорган. химии. 2023. Т. 68. № 9. С. 1154.
- Miao Q., Gao J., Wang Z. et al. // Inorg. Chim. Acta. 2011. V. 376.№1. P. 619. https://doi.org/10.1016/j.ica.2011.07.046
- Davis C.C., Murphy T.E. // IEEE Signal Process. Mag. 2011. V. 28. P. 147. https://doi.org/10.1109/MSP.2011.941096
- Tahara K., Kadowaki T., Kikuchi J.-I. et al. // BCSJ. 2018. V. 91.№11. P. 1630. https://doi.org/10.1246/bcsj.20180187
- Pashanova K.I., Lazarev N.M., Zolotukhin A.A. et al. // ChemistrySelect 2024. V. 9. № 15. P. e202304536. https://doi.org/10.1002/slct.202304536
- Райхардт К. Растворители и эффекты среды в органической химии. М.: Мир, 1991. C. 202.
- Fukin G.K., Cherkasov A.V., Shurygina M.P. et al. // Struct. Chem. 2010. V. 21. P. 607. https://doi.org/10.1007/s11224-010-9590-1
- van der Tol E.B., van Ramesdonk H.J., Verhoeven J.W. et al. // Chem. Eur. J. 1998. V. 4. № 11. P. 2315. 3.0.CO;2-E
- Svetogorov R.D., Dorovatovskii P.V., Lazarenko V.A. // Cryst. Res. Technol. 2020. V. 55. № 5. P. 1900184. https://doi.org/10.1002/crat.201900184
- Bruker. APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA, 2016.
- Krause L., Herbst-Irmer R., Sheldrick G.M. et al. // J. Аppl. Сrystallogr. 2015. V. 48. P. 3. https://doi.org/10.1107/S1600576714022985
- Kabsch W. // Acta Crystallogr., Sect. D. 2010. V. 66. P. 125. https://doi.org/10.1107/S0907444909047337
- Sheldrick G.M. // Acta Crystallogr., Sect. A. 2015. V. 71. P. 3. https://doi.org/10.1107/ S2053273314026370
- Sheldrick G.M. // Acta Crystallogr., Sect. C. 2015. V. 71. P. 3. https://doi.org/10.1107/ S2053229614024218
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
- Лебедев Ю.А., Мирошниченко Е.А. Термохимия парообразования органических веществ. М.: Наука, 1981.
- Frisch M.J., Trucks G.W., Schlegel H.B. et al. // Revision D.01. Gaussian, Inc. Wallingford CT. 2013.
- O’Boyle N.M., Tenderholt A.L., Langner K.M. // J. Comput. Chem. 2008. V. 29.№5. P. 839. https://doi.org/10.1002/jcc.20823
- Laurent A.D., Jacquemin D. // Int. J. Quant. Chem. 2013. V. 113.№17. P. 2019. https://doi.org/10.1002/qua.24438
- Poddel’sky A.I., Cherkasov V.K., Abakumov G.A. // Coord. Chem. Rev. 2009. V. 253.№3-4. P. 291. https://doi.org/10.1016/j.ccr.2008.02.004
- Alkhatib Q., Helal W., Marashdeh A. // RSC Аdv. 2022. V. 12. P. 1704. https://doi.org/10.1039/D1RA08795A
- Малеева А.В., Трофимова О.Ю., Якушев И.А. // Коорд. химия. 2023. Т. 49.№7. С. 412.
- Арсеньева К.В., Климашевская А.В., Арсеньев М.В. // Изв. АН. Сер. хим. 2024. Т. 72. № 1. С. 117.
- Pashanova K.I., Lazarev N.M., Kukinov A.A. et al. // ChemistrySelect. 2022. V. 7.№10. P. 202104477. https://doi.org/10.1002/slct.202104477
- Лебедев А.Т. Масс-спектрометрия в органической химии. М.: Бином, 2015.
Дополнительные файлы
