Синтез CeO2 и CeO2/C с использованием в качестве темплата порошковой целлюлозы и порошковой целлюлозы-сахарозы
- Авторы: Шишмаков А.Б.1, Микушина Ю.В.1, Корякова О.В.1
- 
							Учреждения: 
							- Институт органического синтеза им. И.Я. Постовского УрО РАН
 
- Выпуск: Том 68, № 7 (2023)
- Страницы: 867-876
- Раздел: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://ruspoj.com/0044-457X/article/view/665219
- DOI: https://doi.org/10.31857/S0044457X22602231
- EDN: https://elibrary.ru/RHUWEQ
- ID: 665219
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Проведен синтез нанооксида CeO2 из нитрата церия(III) с использованием в качестве темплатов порошковой целлюлозы (ПЦ) и ее смеси с сахарозой. Удаление темплатов из композитов (ПЦ-Ce(NO3)3 и ПЦ-сахароза-Ce(NO3)3) осуществляли двумя способами: непосредственным выжиганием ПЦ (ПЦ-сахароза) в токе воздуха и выжиганием карбонизата после пиролиза темплатов. Методами УФ- и ИК-спектроскопии, рентгенофазового анализа (РФА) и электронной микроскопии исследовано влияние состава темплата и способа его удаления на физико-химические характеристики наночастиц CeO2. Пиролизом композитов ПЦ-Ce(NO3)3 и ПЦ-сахароза-Ce(NO3)3 синтезирован углерод-оксидный материал CeO2/C. Установлено, что при пиролизе ПЦ-Ce(NO3)3 и ПЦ-сахароза-Ce(NO3)3 в карбонизате формируются наночастицы CeO2 (церианит) с размерами 3–4 и 1–2.5 нм соответственно. Средний диаметр наночастиц (по данным РФА) составляет 3.8 и 2.3 нм. В CeO2/C, синтезированном из композита ПЦ-сахароза-Ce(NO3)3, фиксируется присутствие оксида церия(III). Все наночастицы CeO2 в углеродной матрице имеют гидроксильно-гидратный покров. Выжигание органической или углеродной матрицы композитов приводит, вне зависимости от используемого темплата и условий синтеза, к формированию наночастиц CeO2 (церианит) с одинаковым средним диаметром 25 ± 1 нм (по данным РФА), содержащих примесь фазы Ce(III) и обладающих гидроксильно-гидратным покровом. Углерод в материале присутствует в следовых количествах (≤0.15 вес. %). Разброс наночастиц CeO2 по размерам при выжигании ПЦ из композита ПЦ-Ce(NO3)3 составляет 15–30 нм. В тех случаях, когда выжиганию подвергается органическая составляющая из ПЦ-сахароза-Ce(NO3)3 или в процесс синтеза включается стадия пиролиза обоих композитов, наблюдается появление фракции более крупных частиц CeO2 (50–60 нм). Корректность полученных данных подтверждена в ходе модельного процесса распада пероксида водорода.
Ключевые слова
Об авторах
А. Б. Шишмаков
Институт органического синтеза им. И.Я. Постовского УрО РАН
														Email: Mikushina@ios.uran.ru
				                					                																			                												                								Россия, 620108, Екатеринбург, ул. С. Ковалевской, 22/20						
Ю. В. Микушина
Институт органического синтеза им. И.Я. Постовского УрО РАН
														Email: Mikushina@ios.uran.ru
				                					                																			                												                								Россия, 620108, Екатеринбург, ул. С. Ковалевской, 22/20						
О. В. Корякова
Институт органического синтеза им. И.Я. Постовского УрО РАН
							Автор, ответственный за переписку.
							Email: Mikushina@ios.uran.ru
				                					                																			                												                								Россия, 620108, Екатеринбург, ул. С. Ковалевской, 22/20						
Список литературы
- Scire S., Palmisano L. // Cerium Oxide (CeO2): Synthesis, Properties and Applications. 2019. 402 p.
- Исаева Е.И., Гурьев Н.В., Бойцова Т.Б. и др. // Журн. общ. химии. 2022. Т. 92. № 10. С. 1603. https://doi.org/10.31857/S0044460X22100110
- Sozarukova M.M., Proskurnina E.V., Popov A.L. et al. // RSC Adv. 2021. V. 11. № 56. P. 35351. https://doi.org/10.1039/d1ra06730c
- Abramova A.V., Abramov V.O., Fedulov I.S. et al. // Nanomaterials. 2021. V. 11. № 10. P. 2704. https://doi.org/10.3390/nano11102704
- Sozarukova M.M., Proskurnina E.V., Ivanov V.K. // Nanosyst. Phys. Chem. Math. 2021. V. 12. P. 283. https://doi.org/10.17586/2220-8054-2021-12-3-283-290
- Popov A.L., Andreeva V.V., Khohlov N.V. et al. // Nanosyst. Phys. Chem. Math. 2021. V. 12. P. 329. https://doi.org/10.17586/2220-8054-2021-12-3-329-335
- Shcherbakov A.B., Reukov V.V., Yakimansky A.V. et al. // Polymers. 2021. V. 13. P. 924. https://doi.org/10.3390/polym13060924
- Popov A.L., Kolmanovich D.D., Popova N.R. et al. // Nanosyst: Phys. Chem. Math. 2022. V. 13. № 1. P. 96. https://doi.org/10.17586/2220-8054-2022-13-1-96-103
- Кузнецова М.Н., Жилкина В.Ю. // Фармацевтическое дело и технология лекарств. 2021. № 2. С. 38. https://doi.org/10.33920/med-13-2102-02
- Щербаков А.Б., Иванова О.С., Спивак Н.Я. и др. // Синтез и биомедицинские применения нанодисперсного диоксида церия. Томск: Изд. дом ТГУ, 2016. 476 с.
- Масленников Д.В., Матвиенко А.А., Сидельников А.А. и др. // Химия в интересах устойчивого развития. 2019. № 3. С. 323. https://doi.org/10.15372/KhUR2019141
- Huang J.-J., Wang C.-C., Jin L.-T. et al. // Transactions of Nonferrous Metals Society of China. 2017. V. 27. № 3. P. 578. https://doi.org/10.1016/S1003-6326(17)60064-5
- Moyer K., Conklin D.R., Mukarakate C. et al. // Front. Chem. 2019. V. 7. P. 730. https://doi.org/10.3389/fchem.2019.00730
- Волков А.А., Бойцова Т.Б., Стожаров В.М. и др. // Журн. общ. химии. 2020. Т. 90. № 2. С. 308. https://doi.org/10.31857/S0044460X20020183
- Kaplin I.Y., Lokteva E.S., Golubina E.V. et al. // Molecules. 2020. V. 25. P. 4242. https://doi.org/10.3390/molecules25184242
- Фролова Л.А., Леонова Л.С., Арсланова А.А. и др. // Электрохимия. 2013. Т. 49. № 8. С. 915. https://doi.org/10.7868/S0424857013080082
- Кибис Л.С., Коробова А.Н., Федорова Е.А. и др. // Журн. структур. химии. 2022. Т. 63. № 3. С. 311. https://doi.org/10.26902/JSC_id89211
- Шишмаков А.Б., Микушина Ю.В., Корякова О.В. // Хим. технология. 2022. Т. 23. № 7. С. 290. https://doi.org/10.31044/1684-5811-2022-23-7-290-296
- Babitha K.K., Sreedevi A., Priyanka K.P. et al. // Ind. J. Pure Appl. Phys. 2015. V. 53. № 9. P. 596. https://doi.org/10.56042/ijpap.v53i9.5542
- Hu Z., Haneklaus S., Sparovek G. et al. // Commun. Soil. Sci. Plant. Anal. 2006. V. 37. № 9–10. P. 1381. https://doi.org/10.1080/00103620600628680
- Стоянов А.О., Стоянова И.В., Чивирева Н.А. и др. // Методы и объекты хим. анализа. 2013. Т. 8. № 3. С. 104.
- Халипова О.С. Технология получения оксидных систем СeO2–SiO2 и СeO2–SnO2 в тонкопленочном и дисперсном состояниях из пленкообразующих растворов и их свойства. Автореф. диc. … канд. техн. наук. Томск, 2014. 22 с.
- Земскова Л.А., Егорин А.М., Токарь Э.А. // Журн. неорган. химии. 2021. Т. 66. № 9. С. 1168. https://doi.org/10.31857/S0044457X21090178
- Кравцов А.А., Блинов А.В., Ясная М.А. и др. // Вестн. Самар. гос. техн. ун-та. Сер. техн. науки. 2015. Т. 47. № 3. С. 208.
- Кравцов А.А. Разработка процессов получения и исследование физико-химических свойств наноматериалов для электронной техники на основе оксидов титана и церия. Дис. … канд. техн. наук. Ставрополь, 2016. 186 с.
- Pang J.-H., Liu Y., Li J. et al. // Rare Met. 2019. V. 38. № 1. P. 73. https://doi.org/10.1007/s12598-018-1072-4
- Singh R.D., Koli P.B., Jagdale B.S. et al. // SN Appl. Sci. 2019. № 1. P. 315. https://doi.org/10.1007/s42452-019-0246-5
- Abid S.A., Taha A.A., Ismail R.A. et al. // Envir. Sci. Poll. Res. 2020. V. 27. P. 30479. https://doi.org/10.1007/s11356-020-09332-9
- Farahmandjou M., Zarinkamar M., Firoozabadi T.P. // Rev. Mex. Fis. 2016. V. 62. P. 496.
- Ayodele B.V., Khan M.R., Cheng C.K. // Bull. Chem. React. Eng. Catal. 2016. V. 11. № 2. P. 210. https://doi.org/10.9767/bcrec.11.2.552.210-219
- Calvache-Muñoz J., Prado F.A., Rodríguez-Páez J.E. // Colloids. Surf., A. 2017. V. 529. P. 146. https://doi.org/10.1016/j.colsurfa.2017.05.059
- Dezfuli A.S., Ganjali M.R., Naderi H.R. et al. // RSC Adv. 2015. V. 5. № 57. P. 46050. https://doi.org/10.1039/C5RA02957K
- Saranya J., Sreeja B.S., Padmalaya G. et al. // J. Inorg. Organomet. Polym. Mater. 2019. № 30. P. 1. https://doi.org/10.1007/s10904-019-01403-w
- Syed Khadar Y.A., Balamurugan A., Devarajan V.P. et al. // Orient. J. Chem. 2017. V. 33. № 5. P. 2405. https://doi.org/10.13005/ojc/330533
- Бажукова И.Н., Мышкина А.В., Соковнин С.Ю. и др. // Физ. тв. тела. 2019. Т. 61. № 5. С. 974.
- Abakshonok A.V., Kvasyuk A.A., Eryomin A.N. et al. // Proc. Natl. Acad. Sci. Belarus. Chem. series. 2017. V. 3. P. 7.
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 








