Indium Oxide–Graphene Composites Prepared by the Sol–Gel Process and Single-Electrode Gas Sensors on Their Base
- 作者: Haiduk Y.S.1, Usenka A.E.1, Rutkovskaya L.S.1, Golodok R.P.2, Timonenkova A.S.1, Pankov V.V.1
- 
							隶属关系: 
							- Belarussian State University
- Academician Roman Institute of Powder Metallurgy, National Academy of Sciences of the Republic of Belarus
 
- 期: 卷 68, 编号 1 (2023)
- 页面: 145-154
- 栏目: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://ruspoj.com/0044-457X/article/view/665348
- DOI: https://doi.org/10.31857/S0044457X22601365
- EDN: https://elibrary.ru/GWAMEI
- ID: 665348
如何引用文章
详细
Indium oxide–graphene composites (containing 0–6.0 wt % graphene) were manufactured by the sol–gel process. The phase composition, microstructure, and gas-sensitive properties of the prepared materials were studied. The composites consist of isolated In2O3 and graphene phases, where graphene is predominantly adsorbed on the surfaces of indium oxide grains (the indium oxide grain sizes are 8–11 nm). The nanocomposites are distinguished by an enhanced sensitivity to both reducing gases (CH4, acetone) and oxidative gases (NO2). A far greater enhancement is in the sensory response to oxidative gases. Presumably, the major factors influencing the sensory properties of the composite are the high defectiveness of In2O3 and graphene phases, higher specific surface areas of composites compared to those of individual In2O3, and the likely formation of p–n junctions in the indium oxide and graphene contact zone. Graphene additives to indium oxide can improve the main performances (sensory response, response time, and recovery time) of single-electrode semiconductor sensors.
作者简介
Yu. Haiduk
Belarussian State University
														Email: haidukys@bsu.by
				                					                																			                												                								220030, Minsk, Belarus						
A. Usenka
Belarussian State University
														Email: haidukys@bsu.by
				                					                																			                												                								220030, Minsk, Belarus						
L. Rutkovskaya
Belarussian State University
														Email: haidukys@bsu.by
				                					                																			                												                								220030, Minsk, Belarus						
R. Golodok
Academician Roman Institute of Powder Metallurgy, National Academy of Sciences of the Republic of Belarus
														Email: haidukys@bsu.by
				                					                																			                												                								220072, Minsk, Belarus						
A. Timonenkova
Belarussian State University
														Email: haidukys@bsu.by
				                					                																			                												                								220030, Minsk, Belarus						
V. Pankov
Belarussian State University
							编辑信件的主要联系方式.
							Email: haidukys@bsu.by
				                					                																			                												                								220030, Minsk, Belarus						
参考
- Tian W., Liu X., Yu W. // Appl. Sci. 2018. V. 8. P. 1118. https://doi.org/10.3390/app8071118
- Pearce R., Iakimov T. // Sens. Actuators, B: Chem. 2011. V. 155. P. 451. https://doi.org/10.1016/j.snb.2010.12.046
- Sun D., Luo Y., Debliquy M. et al. // Beilstein J. Nanotechnol. 2018. V. 9. P. 2832. https://doi.org/10.3762/bjnano.9.264
- Мокрушин А.С., Симоненко Т.Л., Симоненко Е.П. и др. // Журн. неорган. химии. 2021. Т. 66. № 9. С. 1336. https://doi.org/10.31857/S0044457X21090063
- Wu J., Feng S. // Adv. Funct. Mater. 2016. V. 26. P. 7462. https://doi.org/10.1002/adfm.201603598
- Schedin F., Novoselov K.S., Morozov S.V. et al. // Nat. Mater. 2006. V. 6. P. 652. https://doi.org/10.1038/nmat1967
- Chen C.W., Hung S.C. // Appl. Phys. Lett. 2011. V. 99. P. 243502. https://doi.org/10.1063/1.3668105
- Yu K., Wang P., Lu G. et al. // J. Phys. Chem. Lett. 2011. V. 2. P. 537. https://doi.org/10.1021/jz200087w
- Dutta D., Hazra A., Hazra S.K. et al. // Meas. Sci. Technol. 2015. V. 26. P. 115104. https://doi.org/10.1088/0957-0233/26/11/115104
- Yun J., Lim Y., Jang G.-N. et al. // Nano Energy. 2015. V. 19. P. 401. https://doi.org/10.1016/j.nanoen.2015.11.023
- Yavari F., Castillo E. // Appl. Phys. Lett. 2012. V. 100. P. 203120. https://doi.org/10.1063/1.4720074
- Hwang S., Lim J., Park H.-G. et al. // Curr. Appl. Phys. 2012. V. 12. P. 1017. https://doi.org/10.1016/j.cap.2011.12.021
- Zhang Y.H., Chen Y.B. // Nanotechnology. 2009. V. 20. № 18. P. 185504. https://doi.org/10.1088/0957-4484/20/18/185504
- Dai J., Yuan J. // Appl. Phys. Lett. 2009. V. 95. P. 232105. https://doi.org/10.1063/1.3272008
- Salehikhojin A., Esreada D., Lin K.P. et al. // Adv. Mater. 2012. V. 24. P. 53. https://doi.org/10.1002/adma.201102663
- Zhang X., Yu L., Gui Y. et al. // Appl. Surf. Sci. 2016. V. 367. P. 259. https://doi.org/10.1016/j.apsusc.2016.01.168
- Zhang H., Fan L., Dong H. et al. // ACS Appl. Mater. Interfaces. 2016. V. 8. P. 8652. https://doi.org/10.1021/acsami.5b11872
- Ricciardella F., Vollebregt S. // Nanoscale. 2017. V. 9. P. 6085. https://doi.org/10.1039/C7NR01120B
- Lu Y., Dan Y. // Nano Lett. 2009. V. 9. P. 1472. https://doi.org/10.1021/nl8033637
- Zhang L., Li C. // J. Mater. Chem. 2012. V. 22. P. 8438. https://doi.org/10.1039/C2JM16552J
- Huang X., Hu N., Gao R. et al. // J. Mater. Chem. 2012. V. 22. P. 22488. https://doi.org/10.1039/C2JM34340A
- Zou Y., Wang Q., Xiang C. et al. // Int. J. Hydrogen Energy. 2016. V. 41. P. 5396. https://doi.org/10.1016/j.ijhydene.2016.02.023
- Simon I., Haiduk Yu., Mülhaupt R. et al. // Nano Materials Sci. 2021. V. 3. P. 412. https://doi.org/10.1016/j.nanoms.2021.03.004
- Zhang Z., Zou R. // J. Mater. Chem. 2011. V. 21. P. 17360. https://doi.org/10.1039/C1JM12987B
- Yi J., Lee J.M. // Sens. Actuators, B: Chem. 2011. V. 155. P. 264. https://doi.org/10.1016/j.snb.2010.12.033
- Liu S., Yu B., Zhang H. et al. // Sens. Actuators, B: Chem. 2014. V. 202. P. 272. https://doi.org/10.1016/j.snb.2014.05.086
- Wang C., Zhu J., Liang Sh. et al. // J. Mater. Chem. A. 2014. V. 2. P. 18635. https://doi.org/10.1039/C4TA03931A
- Singkammo S., Wisitsoraat A., Sriprachuabwong Ch. et al. // ACS Appl. Mater. Interfaces. 2015. V. 7. P. 3077. https://doi.org/10.1021/acsami.5b00161
- Han M., Liu W., Qu Y. et al. // J. Mater. Sci. Mater. Electron. 2017. V. 28. P. 16973. https://doi.org/10.1007/s10854-017-7619-6
- Karaduman I., Er E., Çelikkan H. et al. // J. Alloys Compd. 2017. V. 722. P. 569. https://doi.org/10.1016/j.jallcom.2017.06.152
- Kim H.W., Kwon J.Y., Mirzaei A. et al. // Sens. Actuators, B: Chem. 2017. V. 249. P. 590. https://doi.org/10.1016/j.snb.2017.03.149
- Wang T., Sun Z., Huang D. et al. // Sens. Actuators, B: Chem. 2017. V. 252. P. 284. https://doi.org/10.1016/j.snb.2017.05.162
- Zhou Y., Lin X., Wang Y. et al. // Sens. Actuators, B: Chem. 2017. V. 240. P. 870. https://doi.org/10.1016/j.snb.2016.09.064
- Bhati V.S., Ranwa S., Rajamani S. et al. // ACS Appl. Mater. Interfaces. 2018. V. 10. P. 11116. https://doi.org/10.1021/acsami.7b17877
- Ye Z., Tai H., Guo R. et al. // Appl. Surf. Sci. 2017. V. 419. P. 84. https://doi.org/10.1016/j.apsusc.2017.03.251
- Haiduk Yu., Khort A., Lapitskaya V. et al. // Nano-Structures Nano-Objects. 2022. V. 29. № 2. P. 100824. https://doi.org/10.1016/j.nanoso.2021.100824
- Кулакова И.И., Лисичкин Г.В. // Журн. общ. химии. 2020. Т. 90. № 10. С. 1601. https://doi.org/10.31857/S0044460X20100157
- Korotcenkov G. // Sens. Actuators, B. 2007. V. 121. P. 664. https://doi.org/10.1016/J.SNB.2006.04.092
- Zhu Y., Murali S., Cai W. et al. // Adv. Mater. 2010. V. 22. P. 3906. https://doi.org/10.1002/adma.201090156
- Новиков В.П., Кирик С.А. // Письма в ЖТФ. 2011. Т. 37. С. 44. https://journals.ioffe.ru/articles/viewPDF/12591
- Кричмар С.И., Безпальченко В.М., Мишекин А.А. // Заводская лаборатория. Диагностика материалов. 2008. Т. 74. № 1. С. 21.
- Wall M. The Raman Spectroscopy of Graphene and the Determination of Lazer Thickness. Thermo Fisher Scientific, 2011. https://tools.thermofisher.com/content/sfs/brochures/AN52252_E%201111%20LayerThkns_H_1.pdf
- Gurlo A., Ivanovskaya M., Barsan N. et al. // Sens. Actuators, B: Chem. 1997. V. 44. P. 327. https://doi.org/10.1016/S0925-4005(97)00199-8
- Marezio M. // Acta Crystallogr. 1966. V. 20. P. 72. https://doi.org/10.1107/S0365110X66001749
- Ivanovskaya M.I., Ovodok E.A., Kotsikau D.A. // Glass Phys. Chem. 2011. V. 37. № 5. P. 560 https://doi.org/10.1134/S1087659611050051
- Поротников Н.В. // Журн. неорган. химии. 1993. Т. 38. № 4. С. 653.
- Sobotta H., Neumann H., Kiin G., Riede V. // Cryst. Res. Technol. 1990. V. 25. P. 61. https://doi.org/10.1002/crat.2170250112
- Liu Y., Ma X., Wang Sh., Gong J. // Appl. Catal. B. 2007. V. 77. P. 125. https://doi.org/10.1016/j.apcatb.2007.07.011
- Haiduk Yu.S., Khort A.A., Lapchuk N.M. et al. // J. Solid State Chem. 2019. V. 273. P. 25. https://doi.org/10.1016/j.jssc.2019.02.023
- Гайдук Ю.С., Савицкий А.А., Хорт А.А. // Журн. неорган. химии. 2019. Т. 64. № 6. С. 594. https://doi.org/10.1134/S0044457X19060072
- Choi S.J., Jang B.-H., Lee S.-J. et al. // ACS Appl. Mater. Interfaces. 2014. V. 6. P. 2588. https://doi.org/10.1021/am405088q
- Dey A. // Mater. Sci. Eng., B. 2018. V. 229. P. 206. https://doi.org/10.1016/j.mseb.2017.12.036
补充文件
 
				
			 
						 
						 
						 
						 
					

 
  
  
  电邮这篇文章
			电邮这篇文章 
 开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅或者付费存取
		                                							订阅或者付费存取
		                                					





