Кластеризация и классификация красных вин по физико-химическим свойствам методами data mining

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Исследовано 178 образцов красных вин итальянских производителей, взятых из общедоступного репозитария машинного обучения UCI. Методами Data Minig выполнен компьютерный анализ влияния 13 физико-химических свойств образцов на распределение вин по трем группам. Построены классификационные модели: факторная, дискриминантная, каноническая, нейросетевые (многослойный персептрон MLP, нейронная сеть Кохонена SOFM), прогнозные (метод опорных векторов, байесовский клссификатор, метод ближайшего соседа) и деревья решений. Обучены нейросетевые кластеризатор SOFM 13-3 и классификаторы MLP 13-5-3 и SOFM 16-3. Выявлено, что пролин, флавоноиды, интенсивность цвета, белки и алкоголь определяют дискриминирующую мощность моделей.

Об авторах

Н. В. Бондарев

Харьковский национальный университет имени В. Н. Каразина

Email: n_bondarev@ukr.net

Список литературы

  1. Ye Ch., Li K., Jia G. // J. Phys. Conf. Ser. 2020. Vol. 1684. N 1. 012067. doi: 10.1088/1742-6596/1684/1/012067
  2. Kumar S., Agrawal K., Mandan N. // 2020 Int. Conf. on Computer Communication and Informatics (ICCCI). Coimbatore, India. 2020. P. 1. doi: 10.1109/ICCCI48352.2020.9104095
  3. Gupta Y. // Procedia Comput. Sci. 2018. Vol. 125. P. 305. doi: 10.1016/j.procs.2017.12.041
  4. Er Y., Atasoy А. // Int. J. Intelligent Syst. Apll. Eng. 2016. Vol. 4. P. 23. doi: 10.18201/ijisae.265954
  5. Baykal H., Yildirim H.K. // Crit. Rev. Food. Sci. Nutr. 2013. Vol. 53. N 5. P. 415. doi: 10.1080/10408398.2010.540359
  6. Левин А.Д., Нагаев А.И., Садагов А.Ю., Карахотин С.Н. // Аналитика и контроль. 2018. T. 22. № 2. C. 147. i 10.15826/analitika.2018.22.2.001
  7. Wine - UCI Machine Learning Repository files. https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data
  8. Forina M., Armanino C., Casting M., Ubigli M. // 1986. Vitis. Vol. 25. P. 189.
  9. Forina M., Leardi R., Armanino C., Lanteri S. // J. Chemometrics. 1990. Vol. 4. N 2. P. 191. doi: 10.1002/cem.1180040210
  10. Bai X., Wang L., Li H. // 5th Int. Conf. on Education Technology, Management and Humanities Science (ETMHS 2019). Xi'an, China, 2019. P. 1443. doi: 10.25236/etmhs.2019.309
  11. Mor N.S., Asras T., Gal E., Demasia T., Tarab E., Ezekiel N., Nikapros O., Semimufar O., Gladky E., Karpenko M., Sason D., Maslov D., Mor O. // AgriRxiv. 2022. doi: 10.31220/agriRxiv.2022.00126
  12. Amerine M.A., Roessler E.B. Wines: Their Sensory Evaluation. San Francisco: W.H. Freeman & Co, 1983. 432 p.
  13. Кишковский З.Н., Скурихин И.М. Химия вина. М.: 1996. 462 c.
  14. Аникина Н.С., Червяк С.Н., Гниломедова Н.В. // Аналитика и контроль. 2019. Т. 23. № 2. С. 158. doi: 10.15826/analitika.2019.23.2.003
  15. Aleixandre-Tudo J.L., Du Toit W. In: Frontiers and New Trends in the Science of Fermented Food and Beverages. London: IntechOpen, 2018. P. 1. doi: 10.5772/intechopen.79550
  16. Ким Дж.-О., Мьюллер Ч.У., Клекка У.Р. Факторный, дискриминантный и кластерный анализ. М.: Финансы и статистика. 1989. 216 c.
  17. Малхорта Н.К. Маркетинговые исследования. Практическое руководство. М.: Издательский дом "Вильямс", 2002. 960 с.
  18. Боровиков В.П. STATISTICA. Искусство анализа данных на компьютере. СПб: Питер, 2003. 686 с.
  19. Наследов А. IBM SPSS Statistics 20 и AMOS: профессиональный статистический анализ данных. СПб: Питер, 2013. 416 с.
  20. Бондарев Н.В. // ЖОХ. 2020. Т. 90. Вып. 10. С. 1583. doi: 10.31857/S0044460X20100145
  21. Bondarev N.V. // Russ. J. Gen. Chem. 2020. Vol. 90. N 10. P. 1906. doi: 10.1134/S107036322010014X
  22. Бондарев Н.В. // ЖОХ. 2021. Т. 91. Вып. 3. С. 449. doi: 10.31857/S0044460X21030112
  23. Bondarev N.V. // Russ. J. Gen. Chem. 2021. Vol. 91. N 3. P. 409. doi: 10.1134/S1070363221030117
  24. Kalika E., Bondarev N., Katin K., Kochaev A., Grekova A., Kaya S., Bauetdinov Y., Maslov M. // J. Mol. Liq. 2023. Vol. 377. 121559. doi: 10.1016/j.molliq.2023.121559
  25. Cattell R.B. // Multivariate Behav. Res. 1966. Vol. 1. N 2. P. 245. doi: 10.1207/s15327906mbr0102_10
  26. Халафян А.А. Современные статистические методы медицинских исследований. М.: ЛКИ, 2008. 320 с.
  27. Nocedal J., Wright S.J. Numerical Optimization. Springer, 2006. 683 p.
  28. Al-Baali M., Spedicato E., Maggioni F. // Optimization Methods and Software. 2013. Vol. 29. N 5. P.937. doi: 10.1080/10556788.2013.856909
  29. Халафян А.А., Темердашев З.А., Т.И. Гугучкина Т.И., Якуба Ю.Ф. // Аналитика и контроль. 2017. Т. 21. N 2. С. 161. doi: 10.15826/analitika.2017.21.2.010

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2023