Synthesis of aromatic bishydrazones: new facets of a known reaction
- Autores: Epishina M.A.1, Kulikov A.S.1, Fershtat L.L.1
- 
							Afiliações: 
							- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences
 
- Edição: Volume 93, Nº 11 (2023)
- Páginas: 1643-1649
- Seção: Articles
- URL: https://ruspoj.com/0044-460X/article/view/667282
- DOI: https://doi.org/10.31857/S0044460X2311001X
- EDN: https://elibrary.ru/PBOZXJ
- ID: 667282
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
This work reconsiders the known condensation reaction of 1,2-diketones with arylhydrazines in the synthesis of the corresponding bishydrazones. It was shown that the reaction outcome significantly depends on the nature of the substituent of the aromatic ring of arylhydrazine. In addition, representatives of unsymmetrically substituted bishydrazones, rarely found in the literature, were obtained. The proposed approach is easy to carry out and isolate target bishydrazones, which opens the way to the preparation of various nitrogen-containing molecular systems based on them.
			                Palavras-chave
Sobre autores
M. Epishina
N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences
A. Kulikov
N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences
L. Fershtat
N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences
														Email: fershtat@ioc.ac.ru
				                					                																			                												                														
Bibliografia
- Popiolek L. // Med. Chem. Res. 2017. Vol. 26. P. 287. doi: 10.1007/s00044-016-1756-y
- Popiolek L. // Biomed. Pharmacother. 2023. Vol. 163. P. 114853. doi: 10.1016/j.biopha.2023.114853
- K�lmel D.K., Kool E.T. // Chem. Rev. 2017. Vol. 117. P. 10358. doi: 10.1021/acs.chemrev.7b00090
- Bystrov D.M., Ananyev I.V., Fershtat L.L., Makhova N.N. // J. Org. Chem. 2020. Vol. 85. P. 15466. doi: 10.1021/acs.joc.0c02243
- Kulikov A.S., Epishina M.A., Churakov A.I., Anikina L.V., Fershtat L.L., Makhova N.N. // Mendeleev Commun. 2018. Vol. 28. P. 623. doi: 10.1016/j.mencom.2018.11.020
- Butler R.N., Cunningham D., McArdle P., O'Halloran G.A. // J. Chem. Soc. Chem. Commun. 1988. Vol. 3. P. 232. doi: 10.1039/C39880000232
- Butler R.N., Evans A.M., McNeela E.M., O'Halloran G.A., O'Shea P.D., Cunningham D., McArdle P. // J. Chem. Soc. Perkin Trans. 1 1990. P. 2527. doi: 10.1039/P19900002527
- Wu Z.-C., Boger D.L. // J. Am. Chem. Soc. 2019. Vol. 141. P. 16388. doi: 10.1021/jacs.9b07744
- Wu Z.-C., Boger D.L. // J. Org. Chem. 2022. Vol. 87. P. 16829. doi: 10.1021/acs.joc.2c02687
- Japp F.R., Klingemann F. // Lieb. Ann. Chem. 1888. Vol. 247. P. 190. doi: 10.1002/jlac.18882470208
- Butler R.N., O'Shea D.F. // Heterocycles. 1994. Vol. 37. P. 571. doi: 10.3987/REV-93-SR1
- Tabbiche A., Bouchama A., Chafai N., Zaidi F., Chiter C., Yahiaoui M., Abiza A. // J. Mol. Struct. 2022. Vol. 1261. P. 132865. doi: 10.1016/j.molstruc.2022.132865
- Butler R.N., Hanniffy J.M., Stephens J.C., Burke L.A. // J. Org. Chem. 2008. Vol. 73. P. 1354. doi: 10.1021/jo702423z
- Nagaraj K., Singh A., Shetty A.N., Trivedi D.R. // Supramol. Chem. 2021. Vol. 33. P. 534. doi: 10.1080/10610278.2022.2087524
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
