ON THE NON-INERT PERTURBATION METHOD FOR PROVING THE EXISTENCE OF NON-LINEARIZABLE SOLUTIONS IN A NONLINEAR EIGENVALUE PROBLEM ARISING IN THE THEORY OF WAVEGUIDES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The problem of propagation of electromagnetic waves in a plane dielectric waveguide is studied. The waveguide is filled with a nonlinear inhomogeneous medium; the nonlinearity is characterized by an arbitrary monotone positive continuously differentiable function with a stepwise increase on infinity. The inhomogeneity of the medium is characterized by small (non-monotone) perturbations of the linear part of the dielectric permeability, as well as the coefficient at the nonlinear term. From a mathematical point of view, this problem is equivalent to the eigenvalue problem for a system of Maxwell equations with mixed boundary conditions. To study the problem, a perturbation method is proposed, in which a simpler nonlinear problem is used as the main problem. The existence of both linearizable and non-linearizable solutions is proved.

About the authors

D. V Valovik

Penza State University

Email: dvalovik@mail.ru
Penza

A. A Dyundyaeva

S. V Tikhov

Penza State University

Email: tik.stanislav2015@yandex.ru
Penza

References

  1. Eleonskii V.M., Silin V.P. Theory of self-trapping of an electromagnetic field in a nonlinear medium // Sov. Phys. JETP. 1970. V. 31. № 5. P. 918–923.
  2. Boardman A.D., Egan P., Lederer F., et al. Third-order nonlinear electromagnetic te and tm guided waves. Elsevier sci. Publ. North-Holland, Amsterdam London New York Tokyo, 1991. Reprinted from Nonlinear Surface Electromagnetic Phenomena, Eds. H.-E. Ponath and G. I. Stegeman.
  3. Ахмедиев Н.Н., Анкевич А. Солитоны. М.: Физматлит, 2003.
  4. Кившарь Ю.С., Агравал Г.П. Оптические солитоны. От волоконных световодов к фотонным кристаллам. М.: Физматлит, 2005.
  5. Christian J.M., McDonald G.S., Potton R.J., Chamorro-Posada P. Helmholtz solitons in power-law optical materials // Phys. Rev. A. 2007. V. 76. № 3. P. 033834.
  6. Boardman A.D., Egan P. Novel nonlinear surface and guided te waves in asymmetric lhm waveguides // J. Optic. A: Pure and Appl. Optic. 2009. V. 11. № 11. P. 114032(10).
  7. Валовик Д.В. Распространение электромагнитных волн в открытом плоском диэлектрическом волноводе, заполненном нелинейной средой i: ТЕ-волны // Ж. вычисл. матем. и матем. физ. 2019. Т. 59. № 5. С. 838–858.
  8. Валовик Д.В. Распространение электромагнитных волн в открытом плоском диэлектрическом волноводе, заполненном нелинейной средой i: ТМ-волны // Ж. вычисл. матем. и матем. физ. 2020. Т. 60 № 3. С. 429–450.
  9. Tikhov S.V., Valovik D.V. Nonlinearizable solutions in an eigenvalue problem for maxwell’s equations with nonhomogeneous nonlinear permittivity in a layer // Studies in Appl. Math. 2022. V. 149. № 3. P. 565–587.
  10. Valovik D.V. Maxwell’s equations with nonlinear inhomogeneous constitutive relation: Guided waves in a film filled with inhomogeneous kerr medium // SIAM J. Appl. Math. 2023. V. 83. № 2. P. 553–575.
  11. Tikhov S.V., Valovik D.V. Maxwell’s equations in a plane waveguide with nonhomogeneous nonlinear permittivity: Analytical and numerical approaches // J. Nonlinear Sci. 2023. V. 33. № 105.
  12. Содха М.С., Гхатак А.К. Неоднородные оптические волноводы. М.: Связь, 1980.
  13. Гончаренко А.М., Карпенко В.А. Основы теории оптических волноводов. Минск: Наука и техника, 1983.
  14. Адамс М. Введение в теорию оптических волноводов. М.: Мир, 1984.
  15. Dyundyaeva A., Tikhov S., Valovik D. Transverse electric guided wave propagation in a plane waveguide with kerr nonlinearity and perturbed inhomogeneity in the permittivity function // Photonics. 2023. Vl. 10. № 4.
  16. Eleonskii P.N., Oganes’yants L.G., Silin V.P. Cylindrical nonlinear waveguides // Sov. Phys. JETP. 1972. V. 35. № 1. P. 44–47.
  17. Unger H.G. Planar optical waveguides and fibres. Oxford: Clarendon Press, 1977.
  18. Marcuse D. Theory of dielectric optical waveguides. 2nd ed. Acad. Press, 1991.
  19. Смирнов Ю.Г. Задачи сопряжения на собственные значения, описывающие распространение ТЕ- и ТМволн в двухслойных неоднородных анизотропных цилиндрических и плоских волноводах // Ж. вычисл. матем. и матем. физ. 2015. Т. 55. № 3. С. 460–468.
  20. Курант Р., Гильберт Д. Методы математической физики. Т. 1. М.-Л.: ГИТТЛ, 1951.
  21. Schurmann H.W., Smirnov Yu.G., Shestopalov Yu.V. Propagation of te-waves in cylindrical nonlinear dielectric waveguides // Phys. Rev. E. 2005. V. 71. № 1. P. 016614(10).
  22. Smolkin E.Yu., Valovik D.V. Coupled electromagnetic wave propagation in a cylindrical dielectric waveguide filled with kerr medium: nonlinear effects // J. Modern Optic. 2017. V. 64. № 4. P. 396–406.
  23. Mihalache D., Stegeman G.I., Seaton C.T., et al. Exact dispersion relations for transverse magnetic polarized guided waves at a nonlinear interface // Optic. Lett. 1987. V. 12. № 3. P. 187–189.
  24. Chen Q., Wang Z.H. Exact dispersion relations for tm waves guided by thin dielectrics films bounded by nonlinear media // Optic. Lett. 1993. V. 18. № 4. P. 260–262.
  25. Huang J.H., Chang R., Leung P.T., et al. Nonlinear dispersion relation for surface plasmon at a metal-kerr medium interface // Optic. Communicat. 2009. V. 282. P. 1412–1415.
  26. Понтрягин Л.С. Обыкновенные дифференциальные уравнения. М.: ГИФМЛ, 1961.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences