Apical elongation of molars in the water vole (Arvicola Amphibius (L.), Rodentia, Arvicolinae)

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Dental anomalies of the lower and upper jaws caused by the proliferation of the apical parts of the molars were found in water voles from a laboratory colony. Such a molar phenotype is observed in several representatives of the subfamily Arvicolinae with a constant growth of cheek teeth. In the Water vole, apical elongation of the upper jaw molars was found in 48.4% individuals, and of the lower jaw in 53% individuals (n = 589). The upper molars penetrate the cranial cavity of the animals, while the lower molars form bone growths on the buccal side of the jaw. Elongation of the molars on the lower and upper jaws occurs interrelatedly, as evidenced by the positive correlation between these features (r = 0.35). Ingrowth of molars into the cranial cavity is associated with the sex of the animals. In all age classes, the proportion of females with molar invasion into the skull is higher than that of males. The frequency of detection of dental anomalies is the highest at the age of 1–2.5 years. Positive correlations between the presence of a dental anomaly in siblings or in parents and offspring indicate the hereditary determination of the traits. The growth of the apical parts of the molars on the upper or lower jaw is associated with a decrease in the reproductive performance of females and does not affect the reproductive ability of males.

Texto integral

Acesso é fechado

Sobre autores

L. Proskurnyak

Institute of Animal Systematics and Ecology, Siberian Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: luda_proskurnjak@mail.ru
Rússia, 630091, Novosibirsk

G. Nazarova

Institute of Animal Systematics and Ecology, Siberian Branch, Russian Academy of Sciences

Email: luda_proskurnjak@mail.ru
Rússia, 630091, Novosibirsk

Bibliografia

  1. Громов И.М., Ербаева М.А., 1995. Млекопитающие фауны России и сопредельных территорий. Зайцеобразные и грызуны. Санкт-Петербург: ЗИН РАН. 320 с.
  2. Евсиков В.И., Назарова Г.Г., Рогов В.Г., 1999. Популяционная экология водяной полевки (Arvicola terrestris L.) в Западной Сибири. Сообщение I. Репродуктивная способность самок, полиморфных по окраске шерстного покрова, на разных фазах динамики численности популяции // Сибирский экологический журнал. № 1. С. 59–68.
  3. Литвинов Ю.Н., Ковалева В.Ю., Ефимов В.М., Галактионов Ю.К., 2013. Цикличность популяции водяной полевки как фактор биоразнообразия в экосистемах Западной Сибири // Экология. № 5. С. 383–388.
  4. Назарова Г.Г., Потапов М.А., Евсиков В.И., 2007. Вероятность наступления эструса и спаривания у водяной полевки, Arvicola terrestris L., зависят от физического состояния самок, полового опыта и поведения брачных партнеров // Зоологический журнал. Т. 86. № 12. С. 1507–1512.
  5. Тесаков А.С., 2021. Эволюция фаун мелких млекопитающих и континентальная биостратиграфия позднего кайнозоя юга Восточной Европы и Западной Азии. Дис. … докт. геол. – минер. наук. М.: ГИН РАН. 167 с.
  6. Derbaudrenghien V., Caelenberg A., Hermans K., Gielen I., Martel A., 2010. Dental pathology in chinchillas // Vlaams Diergeneeskundig Tijdschrift. № 79. P. 345–358.
  7. Gill A.E., Bolles K., 1982. A heritable tooth trait varying in two subspecies of Microtus californicus (Rodentia: Cricetidae) // Journal of Mammalogy. V. 63. № 1. P. 96–103.
  8. Golenishchev F.N., Zorenko T.A., Petrova T.V., Voyta L.L., Kryuchkova L.Y., Atanasov N., 2022. Evaluation of the “Bottleneck” Effect in an Isolated Population of Microtus hartingi (Rodentia, Arvicolinae) from the Eastern Rhodopes (Bulgaria) by Methods of Integrative Analysis // Diversity. V. 14. P. 709.
  9. https://doi.org/10.3390/d14090709
  10. Harvey S.B., Alworth L.C., Blas-Machado U., 2009. Molar malocclusions in pine voles (Microtus pinetorum) // Journal of the American Association for Laboratory Animal Science. V. 48. № 4. P. 412–415.
  11. Imai D.M., Pesapane R., Conroy C.J., Alarcón C.N., Allan N., et al., 2018. Apical Elongation of Molar Teeth in Captive Microtus Voles // Veterinary Clinical Pathology. V. 55. № 4. P. 572–583.
  12. https://doi.org/10.1177/0300985818758469 PMID: 29665753
  13. Imbschweiler I., Schauerte N., Henjes C., Fehr M., Baumgärtner W., 2011. Short Communication Odontogenic dysplasia in the molar teeth of Steppe lemmings (Lagurus lagurus) // The Veterinary Journal. V. 188. P. 365–368.
  14. Jheon A.H., Prochazkova M., Sherman M. Manoli D.S., Shah N.M., et al., 2015. Spontaneous emergence of overgrown molar teeth in a colony of Prairie voles (Microtus ochrogaster) // International Journal of Oral Science. V. 7. P. 23–26.
  15. https://doi.org/10.1038/ijos.2014.75
  16. Kaija L.P., Zorenko T.A., Kagainis U., 2023. Effect of stress on occlusal disharmony in Microtus hartingi vole lineages // Conference: One Health and Zoology. September 2023.
  17. https://doi.org/10.13140/RG.2.2.22263.80805
  18. Legendre L.F.J., 2003. Oral disorders of exotic rodents // Vet Clin Exot Anim. V. 6. № 3. P. 601–628.
  19. https://doi.org/10.1016/S1094-9194(03)00041-0
  20. Maser C., Hooven E.F., 1970. Dental abnormalities in Microtus longicaudus // The Murrelet. V. 51. P. 11.
  21. Maul L., Rekovets L.I., Heinrich W.-D., Kelle T., Storch G., 2000. Arvicola mosbachensis (Schmidtgen 1911) of Mosbach 2: A basic sample for the early evolution of the genus and a reference for further biostratigraphical studies // Senckenbergiana lethaea. V. 80. № 1. P. 129–147.
  22. Potapov M.A., Rogov V.G., Ovchinnikova L.E., Muzyka V.Y., Potapova O.F., Bragin A.V., Evsikov V.I., 2004. The effect of winter food stores on body mass and winter survival of water voles, Arvicola terrestris, in Western Siberia: the implications for population dynamics // Folia Zool. V. 53. № 1. P. 37–41.
  23. Renvoisé E., Michon F., 2014. An Evo-Devo perspective on ever-growing teeth in mammals and dental stem cell maintenance // Frontiers in Physiology. V. 28. № 5. P. 324.
  24. https://doi.org/10.3389/fphys.2014.00324
  25. Renvoisé E., Montuire S., 2015. Developmental mechanisms in the evolution of phenotypic traits in rodent teeth. In: Cox P.G., Hautier L., eds. Evolution of the Rodents: Advances in Phylogeny, Functional Morphology and Development. Cambridge, England: Cambridge University Press. P. 478–509.
  26. Sugita S., Uchiumi O., Fujiwara K., Niida S., Fukuta K., 1995. Brain deformation caused by hyperplasia molar teeth (macrodonts) in the Japanese field vole (Microtus montebelli) // Article in Japanese. Experimental Animals. V. 43. P. 769–772.
  27. Szabó F., Köves K., Gál L., 2024. History of the Development of Knowledge about the Neuroendocrine Control of Ovulation‒Recent Knowledge on the Molecular Background // International Journal of Molecular Sciences. V. 25. № 12.
  28. https://doi.org/10.3390/ijms25126531 PMID: 38928237; PMCID: PMC11203711
  29. Tapaltsyan V., Eronen J.T., Lawing A.M., Sharir A., Janis C., et al., 2015. Continuously growing rodent molars result from a predictable quantitative evolutionary change over 50 million years // Cell Reports. V. 11. P. 673– 680.
  30. https://doi.org/10.1016/j.celrep.2015.03.064
  31. Tummers M., Thesleff I., 2003. Root or crown: a developmental choice orchestrated by the differential regulation of the epithelial stem cell niche in the tooth of two rodent species // Development. V. 130. № 6. P. 1049–1057.
  32. Yu T., Klein O.D., 2020. Molecular and cellular mechanisms of tooth development, homeostasis and repair // Development. V. 147. № 2. Jan 24; 147(2): dev184754.
  33. https://doi.org/10.1242/dev.184754 PMID: 31980484; PMCID: PMC6983727

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Apical elongations of the molars on the lower and upper jaws in a water vole. A – lower jaw: on the left – normal; on the right – mandibular apical elongations of the molars m1, m2, m3, deforming the cortical layer of the bone; B – radiograph of the skull with molars penetrating into the cavity (side view and from the side of the foramen magnum); C – normal molars of the upper jaw; D – barely noticeable elongations of the molars of the upper jaw; E – apical elongations of the molars M2, M3 deeply penetrating into the skull.

Baixar (3MB)
3. Fig. 2. Proportion of individuals (%) with apical elongation of the upper jaw molars.

Baixar (374KB)
4. Fig. 3. The degree of elongation of the upper molars, expressed in points, in females and males from different age classes.

Baixar (1MB)
5. Fig. 4. The proportion of individuals (%) of different ages with apical elongation of the lower jaw molars.

Baixar (260KB)
6. Fig. 5. Reproductive success of males and females with or without apical elongation of the maxillary molars: proportion of pairs (%) in which estrus or mating occurred, from the total number of pairs. Asterisks mark the comparison variants in which the differences are statistically significant (p < 0.001).

Baixar (630KB)
7. Fig. 6. Reproductive success of males and females with or without apical elongation of the mandibular molars: proportion of pairs (%) in which estrus or mating occurred, from the total number of pairs. Asterisks mark the comparison variants in which the differences are statistically significant (p < 0.001).

Baixar (612KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025