Anisotropy of acoustic properties in thin-sheet rolled low-carbon manganese steel

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Thin-sheet rolled low-carbon manganese steel 09G2S with a thickness of 0,8 mm which has strong property anisotropy due to texture and residual stresses, was experimentally studied using SH-wave with horizontal polarization and zero-order symmetric Lamb wave mode. The velocities of elastic wave propagation along the sheet were analyzed as their direction and polarization varied relative to the rolling direction in the range of angles from 0 to 180 degrees. The excitation and reception of normal waves in the sheet were carried out by piezoelectric transducers with dry point contact, providing tangential force application. The results of the research on the anisotropy of acoustic properties, X-ray structural analysis of residual stresses and inverse pole figures, and metallographic studies were obtained.

About the authors

V. V. Murav’ev

Kalashnikov Izhevsk State Technical University; Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: ludmila396@istu.ru
Russian Federation, Udmurt Republic, 426069 Izhevsk, Studencheskaya str., 7; 426067 Izhevsk, st. them. Tatyana Baramzina, 34

O. V. Murav’eva

Kalashnikov Izhevsk State Technical University; Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences

Email: ludmila396@istu.ru
Russian Federation, Udmurt Republic, 426069 Izhevsk, Studencheskaya str., 7; 426067 Izhevsk, st. them. Tatyana Baramzina, 34

L. V. Volkova

Kalashnikov Izhevsk State Technical University

Email: ludmila396@istu.ru
Russian Federation, Udmurt Republic, 426069 Izhevsk, Studencheskaya str., 7

K. V. Kolpakov

Kalashnikov Izhevsk State Technical University

Email: ludmila396@istu.ru
Russian Federation, Udmurt Republic, 426069 Izhevsk, Studencheskaya str., 7

D. I. Devyaterikov

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: ludmila396@istu.ru
Russian Federation, 620108 Ekaterinburg, S. Kovalevskaya str., 18

E. A. Kravtsov

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Ural Federal University

Email: ludmila396@istu.ru
Russian Federation, 620108 Ekaterinburg, S. Kovalevskaya str., 18; 620002 Ekaterinburg, Mira str., 19

References

  1. Ginzel E. CIVA as an Aid to Understanding Ultrasonic Anisotropy in Steel // e-Journal of Nondestructive Testing. 2024. No. 3 (29). doi: 10.58286/29306
  2. Zuo P., Fan Z. Modal properties of elastic surface waves in the presence of material anisotropy and prestress // J. Sound Vib. 2020. V. 485. P. 115588. doi: 10.1016/j.jsv.2020.115588
  3. Johnson Ward L., Heyliger Paul R., Benzing, Jake T., Kafka Orion L., Moser Newell H., Harris Derek, Iten Jeremy, Hrabe Nik W. Evidence for contributions of lack-of-fusion defects and dislocations to acoustic nonlinearity and loss in additively manufactured aluminum // NDT E Int. 2024. V. 143. P. 103068. doi: 10.1016/j.ndteint.2024.103068
  4. Miao H., Li F. Shear horizontal wave transducers for structural health monitoring and nondestructive testing: A review // Ultrasonics. 2021. V. 114. P. 106355. doi: 10.1016/j.ultras.2021.106355
  5. Parra-Raad J., Khalili P., Cegla F. Shear waves with orthogonal polarisations for thickness measurement and crack detection using EMATs // NDT E Int. 2020. V. 111. P. 102212. doi: 10.1016/j.ndteint.2019.102212
  6. Parra-Raad J., Lan B., Cegla F. Orthogonally polarised shear waves for evaluating anisotropy and cracks in metals // NDT E Int. 2021. V. 121. P. 102440. doi: 10.1016/j.ndteint.2021.102440
  7. Stepinski T., Mańka M., Martowicz A. Interdigital lamb wave transducers for applications in structural health monitoring // NDT E Int. 2017. V. 86. P. 199—210. doi: 10.1016/j.ndteint.2016.10.007
  8. Holloway P., Ginzel E. Calibration for Anisotropic Effects on Shear Wave Velocity for Improvements of Weld Inspections in TMCP Steels // e-Journal of Nondestructive Testing. 2021.
  9. Ivanova Y. Application of Ultrasonic Methods for Evaluation the Anisotropy of Materials // The Eurasia Proceedings of Science Technology Engineering and Mathematics. 2023. V. 22. P. 258—267. doi: 10.55549/epstem.1350957
  10. Malmström M., Jansson A., Hutchinson B. Application of Laser-Ultrasonics for Evaluating Textures and Anisotropy // Applied Sciences. 2022. V. 12. No. 20. P. 10547. doi: 10.3390/app122010547
  11. Luo Zhongbing, Jin Shijie, Zou Longjiang, Zhu Xiaolei, Lin Li. Gain-scale ultrasonic properties measurement of cast austenitic stainless steel // Measurement. 2020. V. 151. P. 107231. doi: 10.1016/j.measurement.2019.107231
  12. Alabi D.J., Skarlatos A., Riding K.A., Reboud C., Harley J.B. Magnetic anisotropy quantification in steel fiber reinforced materials // NDT & E International. 2024. V. 141. P. 102995. doi: 10.1016/j.ndteint.2023.102995
  13. Simonetti F., Alqaradawi M.Y. Guided ultrasonic wave tomography of a pipe bend exposed to environmental conditions: A long-term monitoring experiment // NDT & E International. 2019. V. 105. P. 1—10. doi: 10.1016/j.ndteint.2019.04.010
  14. Willey C.L., Simonetti F., Nagy P.B., Instanes G. Guided wave tomography of pipes with high-order helical modes // NDT E Int. 2014. V. 65. P. 8—21. doi: 10.1016/j.ndteint.2014.03.010
  15. Trushkevych O., Dixon S., Tabatabaeipour M., Potter M.D.G., MacLeod C., Dobie G., Edwards R.S. Calibration-free SH guided wave analysis for screening of wall thickness in steel with varying properties // NDT & E International. 2023. V. 135. P. 102789. doi: 10.1016/j.ndteint.2023.102789
  16. Ratassepp M., Rao J., Fan Z. Quantitative imaging of Young’s modulus in plates using guided wave tomography // NDT & E International. 2018. V. 94. P. 22—30. doi: 10.1016/j.ndteint.2017.09.016
  17. Williams C.L., Lear M.H., Shokouhi P. A review of the microstructural contributions to the acoustic nonlinearity parameter measured with longitudinal and Rayleigh wave second harmonic generation in metals // NDT & E International. 2024. V. 142. P. 103027. doi: 10.1016/j.ndteint.2023.103027
  18. Wang Yingzhu, Zhu Xupeng, Gong Yunxuan, Liu Nanxi, Li Zuohua, Long Zhili, Teng Jun. Combination of transverse and longitudinal ultrasonic waves for plane stress measurement of steel plates // Applied Acoustics. 2022. V. 188. P. 108500. doi: 10.1016/j.apacoust.2021.108500
  19. Czink S., Dietrich S., Schulze V. Ultrasonic evaluation of elastic properties in laser powder bed fusion manufactured AlSi10Mg components // NDT E Int. 2022. V. 132. P. 102729. doi: 10.1016/j.ndteint.2022.102729
  20. Du H., Turner J.A., Hu P. Characterization of microstructural anisotropy in pearlitic steel with mode-converted ultrasonic scattering // NDT & E International. 2019. V. 102. P. 189—193. doi: 10.1016/j.ndteint.2018.11.016
  21. Hong Xiaobin, Yue Jikang, Zhang Bin, Liu Yuan. A time-of-flight based weighted imaging method for carbon fiber reinforced plastics crack detection using ultrasound guided waves // NDT & E International. 2023. V. 137. P. 102855. doi: 10.1016/j.ndteint.2023.102855
  22. Anisimov V.A., Katorgin B.I., Kutsenko A.N., Malakhov V.P., Rudakov A.S., Chvanov V.K. Directory Non-Destructive Control / Book 1. Acoustic tensometry. Ed. by V.V. Klyuev. 2006. 98 p.
  23. Naumenko V.V., Smetanin K.S., Muntin А.V., Baranova O.А., Kovtunov S.V. Features of the formation of structure and mechanical properties in rolled products of various thicknesses from low-carbon microalloyed steel produced by casting and rolling complex // Izv. Ferr. Metall. 2021. V. 64. No. 9. P. 669—678. doi: 10.17073/0368-0797-2021-9-669-678
  24. Mishakin V.V., Klyushnikov V.A., Gonchar A.V. Relation between the deformation energy and the Poisson ratio during cyclic loading of austenitic steel // Technical Physics. 2015. V. 60. No. 5. P. 665—668. doi: 10.1134/S1063784215050163
  25. Grishchenko A.I., Modestov V.S., Polyanskiy V.A., Tretyakov D.A., Shtukin L.V. Experimental investigation of the acoustic anisotropy field in the sample with a stress concentrator // St. Petersburg Polytechnical University Journal: Physics and Mathematics. 2017. No. 3. P. 77—82. doi: 10.1016/j.spjpm.2017.02.005
  26. Kolikov A.P., Ti S.O., Sidorova T.Y. Experimental and mathematical methods for calculation of residual stresses in production of welded pipes // Chernye Metally. 2021. No. 7. P. 41—49. doi: 10.17580/chm.2021.07.03
  27. Pogulyaev S.I., Maksyutin I.V., Popkov A.S. Influence of Uneven Distribution of Residual and Operational Stresses in Pipes on the Occurrence of Stress Corrosion Cracking Defects in Them // Scientific and Technical Collection: News of Gas Science. 2022. V. 1. No. 50. P. 120—132.
  28. Gorkunov E.S., Zadvorkin S.M., Khudorozhkova Yu.V., Korzunin G. S. Effect of the Crystallographic Texture Type on the Anisotropy of the Magnetic Leakage Field Parameters of Steel Plates // Physical Mesomechanics. 2019. V. 22. No. 3. P. 54—64 doi: 10.24411/1683-805X-2019-13006
  29. Dixon S., Fletcher M.P., Rowlands G. The accuracy of acoustic birefringence shear wave measurements in sheet metal // J. Appl. Phys. 2008. V. 104. No. 11. doi: 10.1063/1.3033395
  30. Belyaev Alexander K., Polyanskiy Vladimir A., Semenov Artem S., Tretyakov Dmitry A., Yakovlev Yuriy A. Investigation of the correlation between acoustic anisotropy, damage and measures of the stress-strain state // Procedia Structural Integrity. 2017. V. 6. P. 201—207.
  31. Tretyakov D., Belyaev A., Shaposhnikov N. Acoustic anisotropy and localization of plastic deformation in aluminum alloys // Mater. Today Proc. 2020. V. 30. P. 413—416. doi: 10.1016/j.matpr.2019.12.387
  32. Roohnia M., Tajdini A., Manouchehri N. Assessing wood in sounding boards considering the ratio of acoustical anisotropy // NDT & E International. 2011. V. 44. No. 1. P. 13—20. doi: 10.1016/j.ndteint.2010.09.001
  33. Busko V.N., Osipov A.A. Application of Magnetic Noise Method to Control the Mechanical Anisotropy of Ferromagnetic Materials // Devices Methods Meas. 2019. V. 10. No. 3. P. 281—292. doi: 10.21122/2220-9506-2019-10-3-281-292
  34. Murav’eva O.V., Murav’ev V.V. Methodological peculiarities of using SH- and Lamb waves when assessing the anisotropy of properties of flats // Russian Journal of Nondestructive Testing. 2016. V. 52. No. 7. P. 363—369. doi: 10.1134/S1061830916070056
  35. Murav’ev V.V., Murav’eva O.V., Volkova L.V. Influence of the mechanical anisotropy of thin steel sheets on the parameters of Lamb waves // Steel in Translation. 2016. V. 46. No. 10. P. 752—756. doi: 10.3103/S0967091216100077
  36. Zou Zhouyiao, Hao Yanpeng, Tian Fangyuan, Zheng Yao, He Weiming, Yang Lin, Li Licheng. An Ultrasonic Longitudinal Through-Transmission Method to Measure the Compressive Internal Stress in Epoxy Composite Specimens of Gas-Insulated Metal-Enclosed Switchgear // Energies. 2020. V. 13. No. 5. P. 1248. doi: 10.3390/en13051248
  37. Grechnikov F.V., Erisov Ya.A., Zaitsev V.M. On the calculation of mean anisotropy coefficient of sheet materials // News of the Samara Scientific Center of the Russian Academy of Sciences. 2014. V. 16. No. 4. P. 154—157. doi: 10.3103/S0967091216100077

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences