Acoustic emission and strain gauge control of defects during static tests of composite spring of aircraft chassis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article presents the results of tests of the aircraft landing gear support spring made of Toray T800 prepreg and 30 KhGSA steel. The cases of its testing by acoustic emission, ultrasonic methods and strain gauge during the simulation of horizontal aircraft landing and during the simulation of landing with a side impact are considered. During the spring tests, strain gauge was used, tensile, compressive and torsional deformations were studied. The changes in the main informative parameters of acoustic emission signals (MARSE energy parameter, median frequency, structural and two-interval coefficients) were analyzed. The defect type was determined using a modified structural coefficient. This made it possible to increase the speed of information processing, since its decrease corresponded to the matrix destruction, and its increase corresponded to the fiber destruction. The location of acoustic emission signal sources corresponding to the structure area with the greatest relative deformations was obtained. It was noted that when simulating a horizontal landing of an aircraft, after removing the load, residual deformations were observed in the spring material.

Full Text

Restricted Access

About the authors

L. N. Stepanova

FAI “Siberian Aeronautical Research Institute named after S. A. Chaplygin”

Author for correspondence.
Email: akustika2063@yandex.ru
Russian Federation, 630051, Novosibirsk, Polzunova st., 21

A. S. Laznenko

FAI “Siberian Aeronautical Research Institute named after S. A. Chaplygin”

Email: akustika2063@yandex.ru
Russian Federation, 630051, Novosibirsk, Polzunova st., 21

Е. S. Petrova

FAI “Siberian Aeronautical Research Institute named after S. A. Chaplygin”

Email: akustika2063@yandex.ru
Russian Federation, 630051, Novosibirsk, Polzunova st., 21

A. V. Kazakova

FAI “Siberian Aeronautical Research Institute named after S. A. Chaplygin”

Email: akustika2063@yandex.ru
Russian Federation, 630051, Novosibirsk, Polzunova st., 21

I. S. Ramazanov

FAI “Siberian Aeronautical Research Institute named after S. A. Chaplygin”

Email: akustika2063@yandex.ru
Russian Federation, 630051, Novosibirsk, Polzunova st., 21

V. V. Chernova

The Siberian Transport University

Email: akustika2063@yandex.ru
Russian Federation, 630049, Novosibirsk, D. Kovalchuk st., 191

References

  1. Sereznov A.N., Stepanova L.N., Kabanov S.I., Ramazanov I.S., Chernova V.V. Acoustic emission testing of aircraft materials and structures made of carbon fiber reinforced plastics. Novosibirsk: Nauka, 2024. 288 p.
  2. Sereznov A.N., Stepanova L.N., Laznenko A.S., Kabanov S.I., Kozhemyakin V.L., Chernova V.V. Static tests of wing box of composite aircraft wing using acoustic emission and strain gaging // Defectoskopiya. 2020. No. 8. P. 12—21.
  3. Skal’skii V.R., Stankevich E.M., Matviiv Y.Y. A study of the features of the macrofracturing of composite materials // Defectoskopiya. 2013. No. 10. P. 14—25.
  4. Prosser W.H., Allison S.G., Woodard S.E., Wincheski R.A., Cooper E.G., Price D., Hedley M., Prokopenko M., Scott D.A., Tessler A. Structural health management for future aerospace vehicles // NASA Technical Reports Server. 2004. https://ntrs.nasa.gov/citations/20040200975 [Electronic resource].
  5. Staszewski W.J., Mahzan S., Trayner R. Health monitoring of aerospace composites structures – Active and passive approach // Composites Science and Technology. 2009. V. 69. Is. 11—12. P. 1678—1685. doi: 10.1016/j.compscitech.2008.09.034
  6. Sereznov A.N., Stepanova L.N., Kabanov S.I., Chernova V.V., Kuznetsov A.B. Acoustic Emission Control of Defects in the Aircraft wing Attachment Zone in Flight // Kontrol’. Diagnostika. 2024. V. 27 (6). P. 18—27. [In Russian language]. doi: 10.14489/td.2024.06.pp.018-027
  7. Bashkov O.V., Protsenko A.E., Bryanskii A.A., Romashko R.V. Diagnostics of polymer composite materials and analysis of their production technology by using the method of acoustic emission // Mechanics of composite materials. 2017. V. 53. No. 4. P. 765—774. doi: 10.1007/s11029-017-9683-7
  8. Kanji Ono, Gallego A. Research and application of AE on advanced composite // J. of Acoustic Emission. 2012. V. 30. P. 180—229.
  9. Carboni M., Gianneo A., Giglio M. A low frequency lamb-waves based structural health monitoring of an aeronautical carbon fiber reinforced polymer composite // J. of Acoustic Emission. 2014. V. 32. P. 1—30.
  10. Lexmann M., Bueter A., Schwarzaupt O. Structural Health Monitoring of composite aerospace structures with Acoustic Emission // J. of Acoustic Emission. 2018. V. 35. P. 172—193. doi: 10.1016/B978-0-08-102291-7.00003-4
  11. Aljets D. Acoustic emission location in composite aircraft structures using modal analysis. University of Glamorgan. 2011. 163 p.
  12. Makhutov N.A., Sokolova A.G., Vasil’ev I.E., Chernov D.V., Skvortsov D.F., Bubnov M.A., Ivanov V.I. Monitoring composite fiber failure using acoustic emission system, vibration analyzer, and high-speed video recording // Defectoskopiya. 2020. No. 12. P. 14—23.
  13. Matvienko Y.G., Vasil’ev I.E., Chernov D.V., Pankov V.A. Acoustic-emission monitoring of airframe failure under cyclic loading // Defectoskopiya. 2019. No. 8. P. 24—33.
  14. Sereznov A.N., Stepanova L.N., Petrova E.S., Chernova V.V. Strength tests of butt joints of carbon fiber reinforced plastic aircraft spars using the acoustic emission method and tensometry // Konstrukcii iz kompozicionnyh materialov. 2021. No. 3. P. 49—56. doi: 10.52190/2073-2562_2021_3_49
  15. Kicheev V.E. Energy method for analyzing the mass of a spring chassis of a light aircraft // Proceedings of MAI. 2013. No. 70. [Electronic resource].
  16. Slavin A.V., Donetskiy K.I., Khrulkov A.V. Prospects for the use of polymer composite materials in aircraft structures in 2025-2035 (review) // Proceedings of VIAM. 2022. No. 11 (117). P. 81—92. [Electronic resource]. URL: http://www.viam-works.ru. doi: 10.18577/2307-6046-2022-0-11-81-92
  17. Lobanov D.S., Strungar E.M., Zubova E.M., Wildemann V.E. Studying the development of a technological defect in complex stressed construction cfrp using digital image correlation and acoustic emission methods // Defectoskopiya. 2019. No. 9. P. 3—10.
  18. Adamov A.A., Laptev M.Yu., Gorshkova E.G. Analysis of the international and russian federation national technical standards for mechanical tests of polymeric composite materials // Konstrukcii iz kompozicionnyh materialov. 2012. No. 3. P .72—77.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structural and power diagram of the spring chassis (a) and diagram of the stowage sections (b).

Download (229KB)
3. Fig. 2. Layout of strain gauges and PAE: a — front view; b — top view.

Download (179KB)
4. Fig. 3. Dependences of relative deformations on load, recorded by strain gauges during simulating landing with a lateral impact (a) and horizontal landing (b).

Download (424KB)
5. Fig. 4. Dependences of relative deformations on load, recorded by single strain gauges during simulating landing with a side impact (a) and horizontal landing (b).

Download (422KB)
6. Fig. 5. Location of AE signals in the spring during simulating a landing with a side impact (a) and a horizontal landing (b).

Download (316KB)
7. Fig. 6. Dependences of the AE signal parameters on time, recorded by the PAE0–PAE3 sensors during the imitation of a landing with a side impact: a — MARSE energy parameter; b — median frequency; c — PD42 structural coefficient; d — two-interval coefficient. ♦ — PAE0; ■ — PAE1; ▲ — PAE2; ● — PAE3.

Download (399KB)
8. Fig. 7. Dependences of the AE signal parameters on time, recorded by the PAE4–PAE7 sensors during the imitation of a landing with a side impact: a — MARSE energy parameter; b — median frequency; c — PD42 structural coefficient; d — two-interval coefficient. ♦ — PAE4; ■ — PAE5; ▲ — PAE6; ● — PAE7.

Download (375KB)
9. Fig. 8. Dependences of the AE signal parameters on time, recorded by the PAE0 – PAE3 sensors during the horizontal landing simulation: a — MARSE energy parameter; b — median frequency; c — PD42 structural coefficient; d — two-interval coefficient. ♦ — PAE0; ■ — PAE1; ▲ — PAE2; ● — PAE3.

Download (380KB)
10. Fig. 9. Dependences of the AE signal parameters on time, recorded by the PAE4 – PAE7 sensors during the horizontal landing simulation: a — MARSE energy parameter; b — median frequency; c — PD42 structural coefficient; d — two-interval coefficient. ♦ — PAE4; ■ — PAE5; ▲ — PAE6; ● — PAE7.

Download (383KB)
11. Fig. 10. Area with spring defects identified during ultrasound testing with a Starmans DIO100 PA tomograph and marked in white.

Download (130KB)

Copyright (c) 2025 Russian Academy of Sciences