Features of polytetrafluoroethylene application in high-dose dosimetry of accelerated protons by the method of electron paramagnetic resonance

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

EPR — a high-dose dosimetry method for use in monitoring radiation technologies has been tested for a proton beam with an energy of 18 MeV using a domestic brand of polytetrafluoroethylene as a radiation detector and an original EPR spectrometer. It has been shown that the dose range of the EPR signal is limited to 1.5 MGy, after which saturation occurs. Doses exceeding this value can be measured using additional signals in the EPR spectrum. It was found that irradiation of the detectors leads to their gamma radioactivity. The energy of the gamma radiation and the half-life of the source corresponded to the isotope 18F obtained in the nuclear reaction 18O(p, n)18F, which indicated the presence of oxygen in the detector material, which determines their paramagnetic properties.

Full Text

Restricted Access

About the authors

Е. N. Vazirova

Ural Federal University

Author for correspondence.
Email: e.n.agdantseva@urfu.ru
Russian Federation, 620002, Yekaterinburg, Mira str., 19

M. N. Sarychev

Ural Federal University

Email: m.n.sarychev@urfu.ru
Russian Federation, 620002, Yekaterinburg, Mira str., 19

M. Yu. Artyomov

Ural Federal University

Email: mikhail.artyomov@urfu.ru
Russian Federation, 620002, Yekaterinburg, Mira str., 19

I. I. Milman

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: milman@imp.uran.ru
Russian Federation, 620108, Yekaterinburg, S. Kovalevskaya str., 18

A. I. Surdo

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: surdo@imp.uran.ru
Russian Federation, 620108, Yekaterinburg, S. Kovalevskaya str., 18

R. M. Abashev

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: abashevrm@imp.uran.ru
Russian Federation, 620108, Yekaterinburg, S. Kovalevskaya str., 18

References

  1. Karamyshev O.V., Bunyatov K.S., Gibinsky A.L., Gurskiy S.V., Karamysheva G.A., Lyapin I.D., Malinin V.A., Popov D.V., Shirkov G.D., Shirkov S.G. Research and Development of the SC230 Superconducting Cyclotron for Proton Therapy // Physics of Particles and Nuclei Letters. 2021. V. 18. No. 1. P. 63—74. https://doi.org/10.1134/S1547477121010088
  2. Chernyaev A.P., Varzar S.M., Belousov A.V., Zheltonozhskaya M.V., Lykova E.N. Prospects of Development of Radiation Technologies in Russia // Physics of Atomic Nuclei. 2019. V. 82. No. 5. P. 513—527. https://doi.org/10.1134/S1063778819040070
  3. Obodovsky I.M. Sources of ionizing radiation. Dolgoprudny: Intellect, 2016.
  4. Chernyaev A.P. Radiation Technologies. Science. National Economy Medicine. Moscow: Moscow University Press, 2019.
  5. Alimov A.S. Practical Application of Electron Accelerators. Moscow: Nauchno-Issled. Inst. Yadern. Fiz. Mosk. Gos. Univ., 2011.
  6. Zabaev V.N. Accelerator Applications in Science and Industry. Tomsk: Tomsk Polytechnic University Publ. House, 2008.
  7. Sokovnin S.Yu. Nanosecond Electron Accelerators for Radiation Technologies. Yekaterinburg: Ural State Agrarian University, 2017.
  8. Salimov R.A. High-energy electron accelerators for industrial applications // Physics-Uspekhi. 2000. V. 43. No. 2. P. 189—192. https://doi.org/10.1070/PU2000v043n02ABEH000671
  9. Alimov A.S. Bliznyuk U.A., Borchegovskaya P.U., Varzar S.M., Elansky S.N., Ishkhanov B.S., Litvinov U.U., Matveychuk I.V., Nikolaeva A.A., Rozanov V.V., Studenikin F.R., Chernyaev A.P., Shvedunov V.I., Yurov D.S. Using Accelerated Electron Beams for the Radiation Processing of Foodstuffs and Biomaterials // Bulletin of the Russian Academy of Sciences: Physics. 2017. V. 81. No. 6. P. 743—747. https://doi.org/10.3103/S106287381706003X
  10. Kurnosov A.I., Yudin V.V. Technology of Manufacturing Semiconductor Devices. Moscow: Vysshaya Shkola, 1974.
  11. Chen R., McKeever S.W.S. Theory of Thermoluminescence and Related Phenomena. Singapore: World Scientific, 1997. https://doi.org/10.1142/2781
  12. Yukihara E.G., McKeever S.W.S., Andersen C.E., Bos A.J.J., Bailiff I.K., Yoshimura E.M., Sawakuchi G.O., Bossin L., Christensen J.B. Luminescence dosimetry // Nature Reviews Methods Primers. 2022. V. 2. No. 26. P. 1—21. https://doi.org/10.1038/s43586-022-00102-0
  13. Pikaev A.K. Dosimetry in Radiation Chemistry. Moscow: Nauka, 1975.
  14. Schonbacher Н., Furstner M., Vincke H. High-Level Dosimetric Methods // Radiation Protection Dosimetry. 2009. V. 137. Is. 1—2. P. 83—93. https://doi.org/10.1093/rpd/ncp195
  15. Bradshaw W.W., Cadena D.G., Craword G.W., Spetzler H.A. The use of alanine as solid dosimeter // Radiation Research. 1962. V. 17. P. 11—21. https://doi.org/10.2307/3571206
  16. ISO/ASTM 51607: 2004. Standard Practice for Use of Alanin-EPR Dosimetry System. Annual Book of ASTM Standards.
  17. Guidelines for the development, validation and routine of industrial radiation processed. Vienna: International Atomic Energy Agency, 2013. 148 p. (IAEA radiation technology series. ISSN 2220—7341. No. 4).
  18. GOST 34157—2017. Standard Practice for Dosimetry in Electron Beam and X-Ray (Bremsstrahlung) Irradiation Facilities for Food Processing, 2019.
  19. GOST 8.651—2016. State system for ensuring the uniformity of measurements. Medical products. Radiation sterilization. Dosimetric techniques, 2017.
  20. GET 83-2017. The state primary standard of the unit of the paramagnetic center quantity. FSUE VNIIFTRI.
  21. Leskov A.S., Kuvykina M.B., Tenishev V.P. Dosimetric system on the basis of EPR-spectroscopy with use state primary standards of power of the absorbed dose and Standard of number of the paramagnetic centers // Journal of Physics: Conference Series. 2019. V. 1420. No. 012014. P. 1—3. https://doi.org/10.1088/1742-6596/1420/1/012014
  22. Pavlov A.N., Chizh T.V., Snegirev A.S., Sanzharova N.I., Chernyaev A.P., Borshegovskaya P.Yu., Ipatova V.S., Dorn Yu.A. Technological process of food irradiation and dosimetric support // Radiatsionnaya Gygiena = Radiation Hygiene. 2020. V. 13. No. 4. P. 40—50. https://doi.org/10.21514/1998-426X-2020-13-4-40-50
  23. Milman I.I., Surdo A.I., Abashev R.M., Tsmokalyuk A.N., Berdenev N.E., Agdantseva E.N., Popova M.A. Polytetrafluorethylene in High-Dose EPR Dosimetry for Monitoring Radiation Technologies // Russian Journal of Nondestructive Testing. 2019. V. 55. P. 868—874. https://doi.org/10.1134/S106183091911007X
  24. Vazirova E.N., Abashev R.M., Milman I.I., Surdo A.I. Optical testing of degradation of films of polytetrafluoroethylene and its modification under electron irradiation // Russian Journal of Nondestructive Testing. 2023. V. 59. P. 1291—1296. https://doi.org/10.1134/S1061830923700584
  25. Rokeakh A.I., Artyomov M.Yu. Continuous wave desktop coherent superheterodyne X-band EPR spectrometer // Journal of Magnetic Resonance. 2022. V. 338. No. 107206. P. 1—18. https://doi.org/10.1016/j.jmr.2022.107206
  26. Ivanov I.N., Nikolaenko O.K. Activation Analysis with Use of Short-Lived Nuclides. Moscow: Energoatomizdat, 1987.
  27. Hess E., Takacs S., Scholten B., Tarkanyi F., Coenen H.H., Qaim S.M. Excitation function of 18O(p, n)18F nuclear reaction from up to 30 MeV // Radiochimica Acta. 2001. V. 89. P. 357—362. https://doi.org/10.1524/ract.2001.89.6.357
  28. Milman I.I., Surdo A.I., Abashev R.M., Sarychev M.N., Moiseykin E.V. Cyclotron production of 18F in TLD 500 and other new usage potentialities of anion-deficient corundum // Radiation Measurements. 2017. V. 106. P. 210—213. https://doi.org/10.1016/j.radmeas.2017.03.040
  29. Klimanov V.A., Galjautdinova J.J., Zabelin M.V. Proton Radiotherapy: Current Status and Future Prospects. Part 1. Physical and Technical Aspects // Journal of oncology: diagnostic radiology and radiotherapy. 2018. V. 1. No. 4. P. 14—33. https://doi.org/10.37174/2587-7593-2018-1-4-14-33
  30. Espana S., Sanchez-Parcerisa D., Ibanez P., Sánchez-Tembleque V., Udías J.M., Onecha V.V., Gutierrez-Uzquiza A., Bäcker C.M., Bäumer C., Herrmann K., Costa P.F., Timmermann B., Fraile L.M. Direct proton range verification using oxygen-18 enriched water as a contrast agent // Radiation Physics and Chemistry. 2021. V. 182. No. 109385. P. 1—9. https://doi.org/10.1016/j.radphyschem.2021.109385
  31. Milinchuk V.K., Klinshpont E.R., Pshezhetskii S.Ya. Makroradikaly (Macroradicals). Moscow: Khimiya, 1980.
  32. Shaimukhametova I.F., Bogdanova S.A., Allayarov S.R., Demidov S.V. Influence of Gamma Irradiation on the Surface Energy Characteristics and Wetting of Polytetrafluoroethylene // High Energy Chemistry. 2021. V. 55. No. 5. P. 381—387. https://doi.org/10.1134/S001814392105009X
  33. Jinglong G., Zaochun N., Yanhui L. The investigation of the structural change and the wetting behavior of electron beam irradiated PTFE film // e-Polymers. 2016. V. 16. Is. 2. P. 111—115. https://doi.org/10.1515/epoly-2015-0223
  34. Allayarov S.R., Dixon D.A., Allayarov R.S. Influence of Gamma Irradiation on the Chemical Composition of Polychlorotrifluoroethylene and Polytetrafluoroethylene // High Energy Chemistry. 2020. V. 54. No. 4. P. 285—290. https://doi.org/10.1134/S0018143920040037
  35. Wu Y., Sun C., Wu Y., Xing Y., Xiao J., Guo B., Wang Y., Sui Y. The degradation behavior and mechanism of polytetrafluoroethylene under low energy proton irradiation // Nuclear Instruments and Methods in Physics Research Section B. 2018. V. 430. P. 47—53. https://doi.org/10.1016/j.nimb.2018.06.005
  36. Kiselev V.M., Kislyakov I.M., Bagrov I.V., Starodubtsev A.M., Gogoleva N.G., Wang J. Singlet oxygen generation under optical excitation of polytetrafluoroethylene // Reactive and Functional Polymers. 2023. V. 193. No. 105755. P. 1—7. https://doi.org/10.1016/j.reactfunctpolym.2023.105755

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Calculated dependence of the relative linear energy losses of 18 MeV protons in PTFE on thickness.

Download (137KB)
3. Fig. 2. EPR spectra of PTFE-based detector samples irradiated with 18 MeV protons at doses of 0.16, 0.48, 1.45 and 4.34 MGy.

Download (88KB)
4. Fig. 3. Dose dependence of the main EPR signal of PTFE-based detector samples irradiated with 18 MeV protons at doses of 0.16, 0.48, 1.45 and 4.34 MGy.

Download (51KB)
5. Fig. 4. Energy spectrum of gamma radiation of detector samples irradiated with protons with an energy of 18 MeV.

Download (74KB)
6. Fig. 5. Change in the area under the peak at 511 keV in the energy spectrum of gamma radiation with time with a half-life of 112 min, measured over a time of more than ten half-lives.

Download (69KB)

Copyright (c) 2025 Russian Academy of Sciences