INVESTIGATING POSSIBILITIES OF THERMAL NONDESTRUCTIVE TESTING OF GLASS FIBER REINFORCED PLASTIC SUCKER RODS AND PUMP COMPRESSOR PIPES IN THE OIL INDUSTRY

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The results of experimental studies on defect detection, such as cracks and impact damages, in glass-reinforced plastic pump compressor pipes (PCP) and glass-reinforced plastic sucker rods (PR) using thermal nondestructive testing method involving ultrasonic and optical stimulation are presented. It is demonstrated that infrared thermographic testing is appropriate for detecting cracks, especially ‘kissing’ ones, whereas traditional thermal inspection based on optical heating is more suitable for identifying delaminations and thinning. The efficiency of the inspection depends on the size of the ultrasonic stimulation zone with sufficient power (approximately 0,8 meters in this study). During optical heating procedures, the testing productivity depends on the size of the heated area and the field of view of the thermal imager and can reach several square meters per hour

About the authors

Arsenii Olegovich Chulkov

National Research Tomsk Polytechnic University

Email: chulkovao@tpu.ru
ORCID iD: 0000-0003-1226-0013

Ведущий научный сотрудник, Центр промышленной томографии, Инженерная школа неразрушающего контроля и безопасности

Russian Federation, 634050 Tomsk, Lenin Avenue, 30

Vladimir Platonovich Vavilov

National Research Tomsk Polytechnic University

Email: vavilov@tpu.ru
Russian Federation, 634050 Tomsk, Lenin Avenue, 30

Oleg Makushev

National Research Tomsk Polytechnic University

Email: oam11@tpu.ru
Russian Federation, 634050 Tomsk, Lenin Avenue, 30

Ilmir Garaev

Institute «TatNIPIneft» of PJSC «Tatneft» named after V.D. Shashina

Email: Garaev-Ilmir@tatnipi.ru
Russian Federation, 423403 RT, Almetyevsk, Sovetskaya Street 186A

Alexander Glukhoded

Institute «TatNIPIneft» of PJSC «Tatneft» named after V.D. Shashina

Email: glukhodedav@tatnipi.ru
Russian Federation, 423403 RT, Almetyevsk, Sovetskaya Street 186A

Konstantin Valovskii

TATNEFT-Production LLC of PJSC «Tatneft» named after V.D. Shashina

Author for correspondence.
Email: ValovskiiKV@tatneft.tatar
Russian Federation, 423403 RT, Almetyevsk, Lenin Street, 75

References

  1. Nikolaev A.V., Gilmanova A.M., Gimazetdinov R.A., Kondratyuk I.I. Fiberglass pump rod // Patent RU 2169250C1. Priority date: 05.11.2000.
  2. Russkikh G.I. Technology of continuous formation of fiberglass pump rods // PhD dissertation. Polzunov Altai State Technical University. Biysk, 2007. P. 162.
  3. Malykhina L.V., Mutin I.I., Sakhabutdinov K.G. Experience of using fiberglass pipes at Tatneft // Oil industry. 2009. No. 4. P. 99.
  4. Gavrilyuk Yu.A., Agafonov A.A., Nazarov D.A., Miller V.K. Experience of using fiberglass tubing at the fields of OAO Udmurtneft // Scientific and technical bulletin of Rosneft. 2014. No. 1 (34). P. 44—47.
  5. Grachev V.I., Budadin O.N., Fedotov M.Yu., Smotrova S.A., Aniskovich V.A., Kozelskaya S.O., Rykov A.N. Products from composite materials: Non-destructive testing and technical diagnostics. Moscow: Spektr, 2023. P. 336—352.
  6. Palumbo D., Tamborrino R., Gallietti U., Acersa P., Tati A., Luprano V.A.M. Ultrasonic analysis and lock-in thermography for debonding evaluation of composite adhesive joints // NDT & E International. 2016. V. 78. P. 1—9. doi: 10.1016/j.ndteint.2015.09.001
  7. Umar M.Z., Vavilov V.P., Abdullah H., Ariffin A.K. Detecting low-energy impact damages in carbon-carbon composites by ultrasonic infrared thermography // Defectoskopiya. 2017. No. 7. P. 62—70.
  8. Yang Bo, Yaoda Huang, Long Cheng. Defect detection and evaluation of ultrasonic infrared thermography for aerospace CFRP composites // Infrared Physics & Technology. 2013. V. 60. P. 166—173. doi: 10.1016/j.infrared.2013.04.010
  9. Yunze He, Sheng Chen, Dequiang Zhou. Shared excitation based nonlinear ultrasound and vibro-thermography testing for CFRP barely visible impact damage inspection // IEEE Transactions on Industrial Informatics. 2018. V. 14. P. 1—10. doi: 10.1109/TII.2018.2820816
  10. Chulkov A.O., Vavilov V.P., Nesteruk D.A., Bedarev A.M., Yarkimbaev Sh., Shagdyrov B.I. Synthesizing Data of Active Infrared Thermography under Optical and Ultrasonic Stimulation of Products Made of Complex-Shaped CFRP // Defectoskopiya. 2020. No. 7. P. 54—60.
  11. Li Rongcheng, Wang Fei, Yin Peng, Yang Feng, Zhao Jianghao, Yue Zhuoyan, Liu Lixia, Sfarra Stefano, Vesala G.T., Yue Honghao, Liu Junyan. A review of ultrasonic infrared thermography in nondestructive testing and evaluation (NDT & E): Physical principles, theory and data processing // Infrared Physics &Technology. 2025. V. 150. P. 1—20. doi: 10.1016/j.infrared.2025.105961
  12. https://bzs.ru/catalog/stekloplastikovaya-nasosnaya-shtanga
  13. Zhou Feng Fu, Sheng Zhang Chao, Qing Xu Min, Cheng Jiang Peng. Identification and Reconstruction of Cracks in Ultrasonic Infrared Thermography // Applied Mechanics and Materials. 2012. V. 249—250. P. 46—50. doi: 10.4028/ href='www.scientific.net/AMM.249-250.46' target='_blank'>www.scientific.net/AMM.249-250.46

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences