Enhancing Deep Hole Defects' Visibility in Ultrasonic Detection for Thick-Walled Polyethylene Pipes via Time-Frequency Energy Concentration

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Ultrasonic testing of thick-walled polyethylene pipes is challenged by energy loss, resulting in weak echo signals from deep defects. To enhance the detection of these weak signals, a time-frequency energy concentration method is presented. The fractional adaptive superlet transform combines multiple wavelet transform results with distinct bandwidths through geometric averaging, providing superior time-frequency analysis capabilities than single wavelet transforms. However, its time-frequency representation exhibits the issue of instantaneous frequency deviation. The proposed method addresses the issue via instantaneous frequency-embedding, leading to improved accuracy in instantaneous frequency estimation. Numerical signal analysis reveals higher accuracy in instantaneous frequency estimation using this method, compared to other time-frequency processing methods. When applied to detecting deep defects in thick-walled polyethylene pipes, the method shows an 18.9% increase in weak signal enhancement capability compared to the continuous wavelet transform. Finally, the results demonstrate the method’s accuracy in clarifying instantaneous frequency changes and enhancing instantaneous amplitudes of weak signals, offering a promising approach for the detection of deep defects in thick-walled polyethylene pipes.

Авторлар туралы

Chaolei Chen

University of Shanghai for Science and Technology

Email: sumx@usst.edu.cn
ҚХР, 516, Jun Gong Road, Yangpu District, Shanghai, 200093

Huaishu Hou

Shanghai Institute of Technology

Хат алмасуға жауапты Автор.
Email: hhs927@126.com
ҚХР, 100, Haiquan Road, Fengxian District, Shanghai, 201418

Shiwei Zhang

University of Shanghai for Science and Technology

Email: sumx@usst.edu.cn
ҚХР, 516, Jun Gong Road, Yangpu District, Shanghai, 200093

Mingxu Su

University of Shanghai for Science and Technology

Email: sumx@usst.edu.cn
516, Jun Gong Road, Yangpu District, Shanghai, 200093

Zhifan Zhao

Shanghai Institute of Technology

Email: hhs927@126.com
100, Haiquan Road, Fengxian District, Shanghai, 201418

Chaofei Jiao

Shanghai Institute of Technology

Email: hhs927@126.com
ҚХР, 100, Haiquan Road, Fengxian District, Shanghai, 201418

Әдебиет тізімі

  1. Xie K., Chen L.H., Huang A.F., Zhao K., Zhang H.L. An auxiliary frequency tracking system for general purpose lock-in amplifiers // Meas. Sci. Technol. 2018. V. 29. P. 045010.
  2. Zhang Y.G., Jin D.Q., Chen J. A model-based variable step-size strategy for proximal multitask diffusion LMS algorithm // Digit. Signal Process. 2021. V. 117. P. 103199.
  3. Wan C.T., Chen D.Y., Yang J. Pulse rate estimation from forehead photoplethysmograph signal using RLS adaptive filtering with dynamical reference signal // Biomed. Signal Proces. 2022. V. 71. P. 103189.
  4. Dong K.F., Xu K., Zhou Y.Y., Zuo C., Wang L.M., Zhang C.K., Jin F., Song J.L., Mo W.Q., Hui Y.J. A memristor-based chaotic oscillator for weak signal detection and its circuitry realization // Nonlinear Dynam. 2022. V. 109. No. 3. P. 2129—2141.
  5. Shi P.M., Li M.D., Zhang W.Y., Han D.Y. Weak signal enhancement for machinery fault diagnosis based on a novel adaptive multi-parameter unsaturated stochastic resonance // Appl. Acoust. 2022. V. 189. P. 108609.
  6. Ni Q., Ji J.C., Feng K., Halkon B. A fault information-guided variational mode decomposition (FIVMD) method for rolling element bearings diagnosis // Mech. Syst. Signal. Pr. 2022. V. 164. P. 108216.
  7. Jiang Y., Li H.B., Rangaswamy M. Deep learning denoising based line spectral estimation // IEEE Signal Proc. Let. 2019. V. 26. No. 11. P. 1573—1577.
  8. Legendre S., Massicotte D., Goyette J., Bose T.K. Wavelet-transform-based method of analysis for Lamb-wave ultrasonic NDE signals // IEEE T. Instrum. Meas. 2000. V. 49. No. 3. P. 524—530.
  9. Shi G.M., Chen X.Y., Song X.X., Qi F., Ding A.L. Signal matching wavelet for ultrasonic flaw detection in high background noise // IEEE T. Ultrason. Ferr. 2011. V. 58. No. 4. P. 776—787.
  10. Bazulin E.G. Detection of echo signals from discontinuities due to the use of superresolution procedures for testing concrete piles by the impact method // Russ. J. Nondestruct. Test. 2023. V. 59. P. 868—875.
  11. Moca V.V., Bârzan H., Nagy-Dăbâcan A., Muresan R.C. Time-frequency super-resolution with superlets // Nat. Commun. 2021. V. 12. P. 337.
  12. Bârzan H., Moca V.V., Ichim A.M., Muresan R.C. Fractional superlets // Proc. Eur. Signal Process. Conf. 2021. P. 2220—2224.
  13. Nemytova O.V., Rinkevich A.B., Perov D.V. Instantaneous frequency estimation used for the classification of echo signals from different reflectors // Russ. J. Nondestruct. Test. 2012. V. 48. P. 649—661.
  14. Wang J., Han Y., Wang L.M., Zhang P.Z., Chen P. Instantaneous frequency estimation for motion echo signal of projectile in bore based on polynomial chirplet transform // Russ. J. Nondestruct. Test. 2018. V. 54. P. 44—54.
  15. Daubechies I., Lu J.F., Wu H.T. Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool // Appl. Comput. Harmon. A. 2011. V. 30. No. 2. P. 243—261.
  16. Thakur G., Wu H.T. Synchrosqueezing-based recovery of instantaneous frequency from nonuniform samples // SIAM J. Math. Ana. 2011. V. 43. No. 5. P. 2078—2095.
  17. Starkhammar J., Reinhold I., Moore P.W., Houser D.S., Sandsten M. Detailed analysis of two detected overlaying transient components within the echolocation beam of a bottlenose dolphin (Tursiops truncatus) // J. Acoust. Soc. Am. 2019. V. 145. No. 4. P. 2138—2148.
  18. Yu G., Wang Z.H., Zhao P. Multisynchrosqueezing transform // IEEE T. Ind. Electron. 2019. V. 66. No. 7. P. 5441—5455.
  19. Yu G., Yu M.J., Xu C.Y. Synchroextracting transform // IEEE T. Ind. Electron. 2017. V. 64. No. 10. P. 8042—8054.
  20. Ando S. Time–frequency representation with variant array of frequency-domain Prony estimators // J. Acoust. Soc. Am. 2021. V. 150. No. 4. P. 2682—2694.
  21. Wang Q., Li Y.X., Chen S.J., Tang B. Matching demodulation synchrosqueezing S transform and its application in seismic time–frequency analysis // IEEE Geosci. Remote S. 2022. V. 19. P. 1—5.
  22. Baraniuk R.G., Flandrin P., Janssen A.J.E.M., Michel O.J.J. Measuring time-frequency information content using the Renyi entropies // IEEE T. Inform. Theory. 2001. V. 47. No. 4. P. 1391—1409.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025