Heat shock proteins on the surface of tumor cells as a target for anti-tumor therapy
- Autores: Makarova A.O.1,2, Kostenko V.V.1,2, Ovsyanikova O.V.1,2, Svirshchevskaya E.V.1, Lutsenko G.V.1, Sapozhnikov A.M.1
- 
							Afiliações: 
							- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS
- Lomonosov Moscow State University
 
- Edição: Volume 50, Nº 3 (2024)
- Páginas: 218-230
- Seção: Articles
- URL: https://ruspoj.com/0132-3423/article/view/670870
- DOI: https://doi.org/10.31857/S0132342324030027
- EDN: https://elibrary.ru/OAKNVU
- ID: 670870
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
According to WHO, oncological diseases are the cause of ~5 million people deaths annually. To date, there is no universal solution to fight cancer, despite outstanding achievements in the field of radiotherapy, chemotherapy, and immunotherapy. In this regard, there is a need to develop new approaches to antitumor therapy, in particular based on the search and use of targeted molecules that allow killing tumor cells of various types with high efficiency, without significant toxic effects on healthy organs and tissues. This review presents the characteristics of the main heat shock protein (HSP) families, the features of their expression in tumor cells and the possibility of using monoclonal antibodies to these proteins as a guiding vector for antitumor immunotherapy.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
A. Makarova
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS; Lomonosov Moscow State University
														Email: amsap@mail.ru
				                					                																			                												                	Rússia, 							ul. Miklukho-Maklaya 16/10, Moscow, 117997; Leninskie Gory 1, Moscow, 119991						
V. Kostenko
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS; Lomonosov Moscow State University
														Email: amsap@mail.ru
				                					                																			                												                	Rússia, 							ul. Miklukho-Maklaya 16/10, Moscow, 117997; Leninskie Gory 1, Moscow, 119991						
O. Ovsyanikova
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS; Lomonosov Moscow State University
														Email: amsap@mail.ru
				                					                																			                												                	Rússia, 							ul. Miklukho-Maklaya 16/10, Moscow, 117997; Leninskie Gory 1, Moscow, 119991						
E. Svirshchevskaya
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS
														Email: amsap@mail.ru
				                					                																			                												                	Rússia, 							ul. Miklukho-Maklaya 16/10, Moscow, 117997						
G. Lutsenko
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS
														Email: amsap@mail.ru
				                					                																			                												                	Rússia, 							ul. Miklukho-Maklaya 16/10, Moscow, 117997						
A. Sapozhnikov
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS
							Autor responsável pela correspondência
							Email: amsap@mail.ru
				                					                																			                												                	Rússia, 							ul. Miklukho-Maklaya 16/10, Moscow, 117997						
Bibliografia
- Fu Z., Li S., Han S., Shi C., Zhang Y. // Signal Transduct. Target Ther. 2022. V. 7. P. 93. https://doi.org/10.1038/s41392-022-00947-7
- Beck A., Goetsch L., Dumontet C., Corvaïa N. // Nat. Rev. Drug. Discov. 2017. V. 16. P. 315–337. https://doi.org/10.1038/nrd.2016.268
- Richter K., Haslbeck M., Buchner J. // Mol. Cell. 2010. V. 40. P. 253–266. https://doi.org/10.1016/j.molcel.2010.10.006
- Mertz-Henning L.M., Pegoraro C., Maia L.C., Venske E., Rombaldi C.V., Costa de Oliveira A. // Genet. Mol. Res. 2016. V. 15. P. gmr.15027954. https://doi.org/10.4238/gmr.15027954
- Cedraz H., Gromboni J.G.G., Garcia A.A.P., Jr., Farias Filho R.V., Souza T.M., Oliveira E.R., Oliveira E.B., Nascimento C.S.D., Meneghetti C., Wenceslau A.A. // PLoS One. 2017. V. 12. P. e0186083. https://doi.org/10.1371/journal.pone.0186083
- Taha E.A., Ono K., Eguchi T.// Int. J. Mol. Sci. 2019. V. 20. P. 4588. https://doi.org/10.3390/ijms20184588
- García Lorenzo J., León Vintró X., Camacho Pérez de Madrid M. // Acta Otorrinolaringol. Esp. 2016. V. 67. P. 130–134. https://doi.org/10.1016/j.otorri.2015.03.002
- Minnaar C.A., Szasz A. // Cells. 2022. V. 11. P. 1838. https://doi.org/10.3390/cells11111838
- Youness R.A., Gohar A., Kiriacos C.J., El-Shazly M. // Adv. Exp. Med. Biol. 2023. V. 1409. P. 193–203. https://doi.org/10.1007/5584_2022_736
- Lianos G.D., Alexiou G.A., Mangano A., Mangano A., Rausei S., Boni L., Dionigi G., Roukos D.H.// Cancer Lett. 2015. V. 360. P. 114–118. https://doi.org/10.1016/j.canlet.2015.02.026
- Wu J., Liu T., Rios Z., Mei Q., Lin X., Cao S. // Trends Pharmacol. Sci. 2017. V. 38. P. 226–256. https://doi.org/10.1016/j.tips.2016.11.009
- Yun C.W., Kim H.J., Lim J.H., Lee S.H. // Cells. 2019. V. 9. P. 60. https://doi.org/10.3390/cells9010060
- Fernández-Fernández M.R., GrageraM., OchoaIbarrola L., Quintana-Gallardo L., Valpuesta J.M. // FEBS Lett. 2017. V. 591. P. 2648–2660. https://doi.org/10.1002/1873-3468.12751
- Havalová H., Ondrovičová G., Keresztesová B., Bauer J.A., Pevala V., Kutejová E., Kunová N. // Int. J. Mol. Sci. 2021. V. 22. P. 8077. https://doi.org/10.3390/ijms22158077
- Stangl S., Gehrmann M., Riegger J., Kuhs K., Riederer I., Sievert W., Hube K., Mocikat R., Dressel R., Kremmer E., Pockley A.G., Friedrich L., Vigh L., Skerra A., Multhoff G. // Proc. Natl. Acad. Sci. USA. 2011. V. 108. P. 733–738. https://doi.org/10.1073/pnas.1016065108
- Liu Q., Liang C., Zhou L. // Protein Sci. 2020. V. 29. P. 378–390. https://doi.org/10.1002/pro.3725
- Fan W., Fan S.S., Feng J., Xiao D., Fan S., Luo J. // PLoS One. 2017. V. 12. P. e0185563. https://doi.org/10.1371/journal.pone.0185563
- Shiber A., Ravid T. // Biomolecules. 2014. V. 4. P. 704– 724. https://doi.org/10.3390/biom4030704
- Werner C., Stangl S., Salvermoser L., Schwab M., Shevtsov M., Xanthopoulos A., Wang F., Dezfouli A.B., Thölke D., Ostheimer C., Medenwald D., Windberg M., Bache M., Schlapschy M., Skerra A., Multhoff G. // Cancers. 2021. V. 13. P. 3706. https://doi.org/10.3390/cancers13153706
- Zolkiewski M., Zhang T., Nagy M. // Arch. Biochem. Biophys. 2012. V. 520. P. 1–6. https://doi.org/10.1016/j.abb.2012.01.012
- Wang X.Y., Subjeck J.R. // Int. J. Hyperthermia. 2013. V. 29. P. 364–375. https://doi.org/10.3109/02656736.2013.803607
- Hightower L.E., Guidon P.T., Jr. // J. Cell Physiol. 1989. V. 138. P. 257–266. https://doi.org/10.1002/jcp.1041380206
- Mambula S.S., Calderwood S.K. // J. Immunol. 2006. V. 177. P. 7849–7857. https://doi.org/10.4049/jimmunol.177.11.7849
- Li D.Y., Liang S., Wen J.H., Tang J.X., Deng S.L., Liu Y.X. // Molecules. 2022. V. 27. P. 2361. https://doi.org/10.3390/molecules27072361
- Broquet A.H., Thomas G., Masliah J., Trugnan G., Bachelet M. // J. Biol. Chem. 2003. V. 278. P. 21601– 21606. https://doi.org/10.1074/jbc.M302326200
- Gehrmann M., Liebisch G., Schmitz G., Anderson R., Steinem C., De Maio A., Pockley G., Multhoff G. // PLoS One. 2008. V. 3. P. e1925. https://doi.org/10.1371/journal.pone.0001925
- Bilog A.D., Smulders L., Oliverio R., Labanieh C., Zapanta J., Stahelin R.V., Nikolaidis N. // Biomolecules. 2019. V. 9. P. 152. https://doi.org/10.3390/biom9040152
- Pomorski T., Holthuis J.C., Herrmann A., van Meer G. // J. Cell Sci. 2004. V. 117. P. 805–813. https://doi.org/10.1242/jcs.01055
- Schilling D., Gehrmann M., Steinem C., De Maio A., Pockley A.G., Abend M., Molls M., Multhoff G. // FASEB J. 2009. V. 23. P. 2467–2477. https://doi.org/10.1096/fj.08-125229
- Shevtsov M.A., Komarova E.Y., Meshalkina D.A., Bychkova N.V., Aksenov N.D., Abkin S.V., Margulis B.A., Guzhova I.V. // Oncotarget. 2014. V. 5. P. 3101–3114. https://doi.org/10.18632/oncotarget.1820
- Benaroudj N., Ebel C., Ladjimi M.M. // Eur. J. Biochem. 1999. V. 259. P. 379–384. https://doi.org/10.1046/j.1432-1327.1999.00053.x
- Rafiee M., Kanwar J.R., Berg R.W., Lehnert K., Lisowska K., Krissansen G.W. // Cancer Gene Ther. 2001. V. 8. P. 974–981. https://doi.org/10.1038/sj.cgt.7700395
- Bethke K., Staib F., Distler M., Schmitt U., Jonuleit H., Enk A.H., Galle P.R., Heike M. // J. Immunol. 2002. V. 169. P. 6141–6148. https://doi.org/10.4049/jimmunol.169.11.6141
- Luo H., Yang H., Lin Y., Zhang Y., Pan C., Feng P., Yu Y., Chen X. // Oncotarget. 2017. V. 8. P. 98455–98470. https://doi.org/10.18632/oncotarget.21427
- Yurinskaya M.M., Kochetkova O.Y., Shabarchina L.I., Antonova O.Y., Suslikov A.V., Evgen’ev M.B., Vinokurov M.G. // Cell Stress Chaperones. 2017. V. 22. P. 163–171. https://doi.org/10.1007/s12192-016-0743-z
- Evgen’ev M.B. // Cell Stress Chaperones. 2021. V. 26. P. 617–627. https://doi.org/10.1007/s12192-021-01219-z
- Komarova E.Y., Marchenko L.V., Zhakhov A.V., Nikotina A.D., Aksenov N.D., Suezov R.V., Ischenko A.M., Margulis B.A., Guzhova I.V. // Int. J. Mol. Sci. 2019. V. 21. P. 59–77. https://doi.org/10.3390/ijms21010059
- Shevtsov M.A., Pozdnyakov A.V., Mikhrina A.L., Yakovleva L.Y., Nikolaev B.P., Dobrodumov A.V., Meshalkina D.A., Ischenko A.M., Pitkin E., Guzhova I.V., Margulis B.A. // Int. J. Cancer. 2014. V. 135. P. 2118–2128. https://doi.org/10.1002/ijc.28858
- Lobinger D., Gempt J., Sievert W., Barz M., Schmitt S., Nguyen H.T., Stangl S., Werner C., Wang F., Wu Z., Fan H., Zanth H., Shevtsov M., Pilz M., Riederer I., Schwab M., Schlegel J., Multhoff G. // Front. Mol. Biosci. 2021. V. 8. P. 669366. https://doi.org/10.3389/fmolb.2021.669366
- Krause S.W., Gastpar R., Andreesen R., Gross C., Ullrich H., Thonigs G., Pfister K., Multhoff G. // Clin. Cancer Res. 2004. V. 10. P. 3699–3707. https://doi.org/10.1158/1078-0432.CCR-03-0683
- Kaczmarek M., Lagiedo M., Masztalerz A., Kozlowska M., Nowicka A., Brajer B., Batura-Gabryel H., Sikora J. // Immunobiology. 2018. V. 223. P. 200–209. https://doi.org/10.1016/j.imbio.2017.10.025
- Tukaj S., Sitko K. // Biomolecules. 2022. V. 12. P. 1153. https://doi.org/10.3390/biom12081153
- Wachstein J., Tischer S., Figueiredo C., Limbourg A., Falk C., Immenschuh S., Blasczyk R., Eiz-Vesper B. // PLoS One. 2012. V. 7. P. e51747. https://doi.org/10.1371/journal.pone.0051747
- Botzler C., Li G., Issels R.D., Multhoff G. // Cell Stress Chaperones. 1998. V. 3. P. 6–11. https://doi.org/10.1379/1466-1268(1998)003<0006: doeleo>2.3.co;2
- Affatigato L., Licciardi M., Bonamore A., Martorana A., Incocciati A., Boffi A., Militello V. // Molecules. 2023. V. 28. P. 1163. https://doi.org/10.3390/molecules28031163
- Shevtsov M., Huile G., Multhoff G. // Philos. Trans. R Soc. Lond. B Biol. Sci. 2018. V. 373. P. 20160526. https://doi.org/10.1098/rstb.2016.0526
- Shevtsov M.A., Nikolaev B.P., Ryzhov V.A., Yakovleva L.Y., Marchenko Y.Y., Parr M.A., Rolich V.I., Mikhrina A.L., Dobrodumov A.V., Pitkin E., Multhoff G. // Nanoscale. 2015. V. 7. P. 20652–20664. https://doi.org/10.1039/c5nr06521f
- Shaterabadi Z., Nabiyouni G., Soleymani M. // Prog. Biophys. Mol. Biol. 2018. V. 133. P. 9–19. https://doi.org/10.1016/j.pbiomolbio.2017.10.001
- Johannsen M., Thiesen B., Wust P., Jordan A. // Int. J. Hyperthermia. 2010. V. 26. P. 790–795. https://doi.org/10.3109/02656731003745740
- Maier-Hauff K., Ulrich F., Nestler D., Niehoff H., Wust P., Thiesen B., Orawa H., Budach V., Jordan A. // J. Neurooncol. 2011. V. 103. P. 317–324. https://doi.org/10.1007/s11060-010-0389-0
- Ruan S., Yuan M., Zhang L., Hu G., Chen J., Cun X., Zhang Q., Yang Y., He Q., Gao H. // Biomaterials. 2015. V. 37. P. 425–435. https://doi.org/10.1016/j.biomaterials.2014.10.007
- Ruan S., He Q., Gao H.// Nanoscale. 2015. V. 7. P. 9487–9496. https://doi.org/10.1039/c5nr01408e
- Gehrmann M.K., Kimm M.A., Stangl S., Schmid T.E., Noël P.B., Rummeny E.J., Multhoff G. // Int. J. Nanomedicine. 2015. V. 10. P. 5687–5700. https://doi.org/10.2147/IJN.S87174
- Zheng Y., Hunting D.J., Ayotte P., Sanche L. // Radiat. Res. 2008. V. 169. P. 19–27. https://doi.org/10.1667/RR1080.1
- Schuemann J., Berbeco R.I., Chithrani D.B., Cho S.H., Kumar R.R., McMahon S.J., Sridhar S., Krishnan S. // Int. J. Radiat. Oncol. Biol. Phys. 2016. V. 94. P. 189– 205. https://doi.org/10.1016/j.ijrobp.2015.09.032
- Ali M.R., Ali H.R., Rankin C.R., El-Sayed M.A. // Biomaterials. 2016. V. 102. P. 1–8. https://doi.org/10.1016/j.biomaterials.2016.06.017
- Gehrmann M., Stangl S., Foulds G.A., Oellinger R., Breuninger S., Rad R., Pockley A.G., Multhoff G. // PLoS One. 2014. V. 9. P. 105344. https://doi.org/10.1371/journal.pone.0105344
- Poccia F., Piselli P., Di Cesare S., Bach S., Colizzi V., Mattei M., Bolognesi A., Stirpe F. // Br. J. Cancer. 1992. V. 66. P. 427–432. https://doi.org/10.1038/bjc.1992.291
- Dezfouli A.B., Stangl S., Foulds G.A., Lennartz P., Pilkington G.J., Pockley A.G., Multhoff G. // Methods Mol. Biol. 2023. V. 2693. P. 307–324. https://doi.org/10.1007/978-1-0716-3342-7_23
- Madamsetty V.S., Mukherjee A., Mukherjee S. // Front. Pharmacol. 2019. V. 10. P. 1264. https://doi.org/10.3389/fphar.2019.01264
- Slingerland M., Guchelaar H.J., Gelderblom H. // Drug Discov. Today. 2012. V. 17. P. 160–166. https://doi.org/10.1016/j.drudis.2011.09.015f
- Lu R.M., Chen M.S., Chang D.K., Chiu C.Y., Lin W.C., Yan S.L., Wang Y.P., Kuo Y.S., Yeh C.Y., Lo A., Wu H.C. // PLoS One. 2013. V. 8. P. e66128. https://doi.org/10.1371/journal.pone.0066128
- Wilhelm S., Tavares A.J., Dai Q., Ohta S., Audet J., Dvorak H.F., Chan C.W. // Nat. Rev. Mater. 2016. V. 1. P. e16014. https://doi.org/10.1038/natrevmats.2016.14
- Alswieleh A.M. // J. Chem. 2020. V. 2020. P. e9176257. https://doi.org/10.1155/2020/9176257
- Hassanpour A., Irandoust M., Soleimani E., Zhaleh H. // Mat. Sci. Eng. C Mater. Biol. Appl. 2019. V. 103. P. 109771. https://doi.org/10.1016/j.msec.2019.109771
- Lu S., Neoh K.G., Huang C., Shi Z., Kang E.T. // J. Colloid Interface Sci. 2013. V. 412. P. 46–55. https://doi.org/10.1016/j.jcis.2013.09.011
- Shevtsov M., Zhou Y., Khachatryan W., Multhoff G., Gao H. // Curr. Drug Metab. 2018. V. 19. P. 768–780. https://doi.org/10.2174/1389200219666180611080736
- Genc S., Taghizadehghalehjoughi A., Yeni Y., Jafarizad A., Hacimuftuoglu A., Nikitovic D., Docea A.O., Mezhuev Y., Tsatsakis A. // Pharmaceutics. 2023. V. 15. P. 245. https://doi.org/10.3390/pharmaceutics15010245
- Sparreboom A., Scripture C.D., Trieu V., Williams P.J., De T., Yang A., Beals B., Figg W.D., Hawkins M., Desai N. // Clin. Cancer Res. 2005. V. 11. P. 4136– 4143. https://doi.org/10.1158/1078-0432.CCR-04-2291
- Svenson S. // Chem. Soc. Rev. 2015. V. 44. P. 4131– 4144. https://doi.org/10.1039/c5cs00288e
- Caminade A.M. // J. Pers. Med. 2022. V. 12. P. 1334. https://doi.org/10.3390/jpm12081334
- Stangl S., Gehrmann M., Dressel R., Alves F., Dullin C., Themelis G., Ntziachristos V., Staeblein E., Walch A., Winkelmann I., Multhoff G. // J. Cell Mol. Med. 2011. V. 15. P. 874–887. https://doi.org/10.1111/j.1582-4934.2010.01067.x
- Multhoff G., Pfister K., Gehrmann M., Hantschel M., Gross C., Hafner M., Hiddemann W.A. // Cell Stress Chaperones. 2001. V. 6. P. 337–344. https://doi.org/10.1379/1466-1268(2001)006<0337: AMHPSN>2.0.CO;2
- Taglia L., Matusiak D., Benya R.V. // Clin. Exp. Metastasis. 2008. V. 25. P. 451–463. https://doi.org/10.1007/s10585-008-9151-9
- Gobbo J., Marcion G., Cordonnier M., Dias A.M.M., Pernet N., Hammann A., Richaud S., Mjahed H., Isambert N., Clausse V., Rébé C., Bertaut A., Goussot V., Lirussi F., Ghiringhelli F., de Thonel A., Fumoleau P., Seigneuric R., Garrido C. // J. Natl. Cancer Inst. 2015. V. 108. Р. djv330. https://doi.org/10.1093/jnci/djv330
- Schmitt E., Maingret L., Puig P.E., Rerole A.L., Ghiringhelli F., Hammann A., Solary E., Kroemer G., Garrido C. // Cancer Res. 2006. V. 66. P. 4191– 4197. https://doi.org/10.1158/0008-5472.CAN-05-3778
- McKeon A.M., Egan A., Chandanshive J., McMahon H., Griffith D.M. // Molecules. 2016. V. 21. P. 949. https://doi.org/10.3390/molecules21070949
- Adam C., Baeurle A., Brodsky J.L., Wipf P., Schrama D., Becker J.C., Houben R. // PLoS One. 2014. V. 9. P. e92041. https://doi.org/10.1371/journal.pone.0092041
- Prince T., Ackerman A., Cavanaugh A., Schreiter B., Juengst B., Andolino C., Danella J., Chernin M., Williams H. // Oncotarget. 2018. V. 9. P. 32702–32717. https://doi.org/10.18632/oncotarget.26021
- Li X., Srinivasan S.R., Connarn J., Ahmad A., Young Z.T., Kabza A.M., Zuiderweg E.R.P., Sun D., Gestwicki J.E. // ACS Med. Chem. Lett. 2013. V. 4. P. 1042–1047. https://doi.org/10.1021/ml400204n
- Wadhwa R., Sugihara T., Yoshida A., Nomura H., Reddel R.R., Simpson R., Maruta H., Kaul S.C. // Cancer Res. 2000. V. 60. P. 6818–6821.
- Koya K., Li Y., Wang H., Ukai T., Tatsuda N., Kawakami M., Shishido T., Chen L.B. // Cancer Res. 1996. V. 56. P. 538–543.
- Modica-Napolitano J.S., Koya K., Weisberg E., Brunelli B.T., Li Y., Chen L.B. // Cancer Res. 1996. V. 56. P. 544–550.
- Schett G., Xu Q., Amberger A., Van der Zee R., Recheis H., Willeit J., Wick G. // J. Clin. Invest. 1995. V. 96. P. 2569–2577. https://doi.org/10.1172/JCI118320
- Leng X., Wang X., Pang W., Zhan R., Zhang Z., Wang L., Gao X., Qian L. // Cell Stress Chaperones. 2013. V. 18. P. 483–493. https://doi.org/10.1007/s12192-013-0404-4
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 

