2-fluorocordycepin: chemoenzymatic synthesis and study of anticancer activities in vitro
- Autores: Arnautova A.O.1,2, Antonov K.V.1, Zorina E.A.1, Simonova М.A.1, Paramonov A.S.1, Zhukova О.S.3, Kiselevskiy M.V.3, Kayushin А.L.1, Fateev I.V.1, Dorofeeva Е.V.1, Eletskaya B.Z.1, Berzina М.Y.1, Smirnova О.S.1, Egorova Т.V.4, Esipov R.S.1, Miroshnikov А.I.1, Konstantinova I.D.1
-
Afiliações:
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS
- Engelhardt Institute of Molecular Biology RAS
- N.N. Blokhin National Medical Research Center of Oncology
- Moscow Pedagogical State University
- Edição: Volume 51, Nº 3 (2025)
- Páginas: 469-485
- Seção: ОБЗОРНАЯ СТАТЬЯ
- URL: https://ruspoj.com/0132-3423/article/view/686992
- DOI: https://doi.org/10.31857/S0132342325030105
- EDN: https://elibrary.ru/KQZBWD
- ID: 686992
Citar
Resumo
Two methods for obtaining 2-fluorocordycepin were proposed and implemented: chemical synthesis from 2-fluoroadenosine with a yield of 34% and chemical-enzymatic synthesis with a yield of 66%, including the production of 3-deoxyerythropentofuranose-1-phosphate and subsequent transglycosylation using E. coli purine nucleoside phosphorylase. The cytotoxic activity of 2-fluorocordycepin in vitro was assessed. It was shown that 2-fluorocordycepin exhibits an anti-metabolic effect on a number of tumor cell lines (Jurkat, Raji, MCF-7, THP-1, U937, A549, LS174T), which allows us to consider this compound as a promising candidate for the development of antitumor drugs.
Palavras-chave
Texto integral

Sobre autores
A. Arnautova
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS; Engelhardt Institute of Molecular Biology RAS
Autor responsável pela correspondência
Email: arnautova_ibch@mail.ru
Rússia, ul. Miklukho-Maklaya 16/10, Moscow, 117997; ul. Vavilova 32, Moscow, 119991
K. Antonov
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS
Email: arnautova_ibch@mail.ru
Rússia, ul. Miklukho-Maklaya 16/10, Moscow, 117997
E. Zorina
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS
Email: arnautova_ibch@mail.ru
Rússia, ul. Miklukho-Maklaya 16/10, Moscow, 117997
М. Simonova
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS
Email: arnautova_ibch@mail.ru
Rússia, ul. Miklukho-Maklaya 16/10, Moscow, 117997
A. Paramonov
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS
Email: arnautova_ibch@mail.ru
Rússia, ul. Miklukho-Maklaya 16/10, Moscow, 117997
О. Zhukova
N.N. Blokhin National Medical Research Center of Oncology
Email: arnautova_ibch@mail.ru
Rússia, ul. Kosigina 4/1, Moscow, 119334
M. Kiselevskiy
N.N. Blokhin National Medical Research Center of Oncology
Email: arnautova_ibch@mail.ru
Rússia, ul. Kosigina 4/1, Moscow, 119334
А. Kayushin
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS
Email: arnautova_ibch@mail.ru
Rússia, ul. Miklukho-Maklaya 16/10, Moscow, 117997
I. Fateev
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS
Email: arnautova_ibch@mail.ru
Rússia, ul. Miklukho-Maklaya 16/10, Moscow, 117997
Е. Dorofeeva
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS
Email: arnautova_ibch@mail.ru
Rússia, ul. Miklukho-Maklaya 16/10, Moscow, 117997
B. Eletskaya
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS
Email: arnautova_ibch@mail.ru
Rússia, ul. Miklukho-Maklaya 16/10, Moscow, 117997
М. Berzina
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS
Email: arnautova_ibch@mail.ru
Rússia, ul. Miklukho-Maklaya 16/10, Moscow, 117997
О. Smirnova
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS
Email: arnautova_ibch@mail.ru
Rússia, ul. Miklukho-Maklaya 16/10, Moscow, 117997
Т. Egorova
Moscow Pedagogical State University
Email: arnautova_ibch@mail.ru
Rússia, ul. Malaya Pirogovskaya 1/1, Moscow, 119991
R. Esipov
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS
Email: arnautova_ibch@mail.ru
Rússia, ul. Miklukho-Maklaya 16/10, Moscow, 117997
А. Miroshnikov
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS
Email: arnautova_ibch@mail.ru
Rússia, ul. Miklukho-Maklaya 16/10, Moscow, 117997
I. Konstantinova
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS
Email: arnautova_ibch@mail.ru
Rússia, ul. Miklukho-Maklaya 16/10, Moscow, 117997
Bibliografia
- Cunningham K., Manson, W., Spring F., Hutchinson S. // Nature. 1950. V. 949. P. 166.
- Chen Y. J. // Life Sci. 1997. V. 60. P. 2349–2359. https://doi.org/10.1016/S0024-3205(97)00291-9
- Ng T.B., Wang H.X. // J. Pharm. Pharmacol. 2005. V. 57. P. 1509–1519. https://doi.org/10.1211/jpp.57.12.0001
- Chu C. K., Baker D. C. // Nucleosides and Nucleotides as Antitumor and Antiviral Agents / Eds. Plenum Press: New York, 1993.
- Herdewijn, P. // Modified Nucleosides in Biochemistry, Biotechnology and Medicine / Ed. Wiley-VCH: Weinheim, 2008.
- Thomadaki H., Scorilas A., Tsiapalis C.M., Havredaki M. // Cancer Chemother Pharmacol. 2008. V. 61. P. 251–265. https://doi.org/10.1007/s00280-007-0533-5
- Shao L.W., Huang L.H., Yan S., Jin J.D., Ren S.Y. // Oncol. Lett. 2016. V. 12. P. 995–1000. https://doi.org/10.3892/ol.2016.4706
- Zhou Y., Guo Z., Meng, Q., Lu J., Wang N., Liu H., Liang Q., Quan Y., Wang D., Xie J. // Anti-Cancer Agents Med. Chem. 2017. V. 17. P. 143–149. https://doi.org/10.2174/1871520616666160526114555
- Lee H.H., Jeong J.-W., Lee J.H., Kim G.-Y., Cheong J., Jeong Y.K., Yoo Y.H., Choi Y.H. // Oncol. Rep. 2013. V. 30. P. 1257–1264. https://doi.org/10.3892/or.2013.2589
- Yamamoto K., Shichiri H., Uda A., Yamashita K., Nishioka T., Kume M., Makimoto H., Nakagawa T., Hirano T., Hirai M // Phytother. Res. 2015. V. 29. P. 707– 713. https://doi.org/10.1002/ptr.5305
- Hwang J.-H., Joo J.C., Kim D.J., Jo E., Yoo H.-S., Lee K.-B., Park S.J., Jang I.-S. // Am. J. Cancer Res. 2016. V. 6. P. 1758. https://doi.org/2156-6976/ajcr0035711
- Joo J.C., Hwang J.H., Jo E., Kim Y.-R., Kim D.J., Lee K.-B., Park S.J., Jang I.-S. // Oncotarget 2017. V. 8. P. 12211–12224. https://doi.org/10.18632/oncotarget.14661
- Hwang J.H., Park S.J., Ko W.G., Kang S.-M., Lee D.B., Bang J., Park B.-J., Wee C.-B., Kim D.J., Jang I.-S. // Am. J. Cancer Res. 2017. V. 7. P. 417. https://doi.org/2156-6976/ajcr005071
- Tao X., Ning Y., Zhao X., Pan T. // J. Pharm. Pharmacol. 2016. V. 68. P. 901–911. https://doi.org/10.1111/jphp.12544
- Zhang C., Zhong Q., Zhang X., Hu D., He X., Li Q., Feng T. // J. Chin. Med. Mater. 2015. V. 38. P. 786–789.
- Lee D., Lee W.-Y., Jung K., Kwon Y.S., Kim D., Hwang G.S., Kim C.-E., Lee S., Kang K.S. // Biomolecules 2019. V. 9. P. 414. https://doi.org/10.3390/biom9090414
- Tian T., Song L., Zheng Q., Hu X., Yu R. // Pharm. Mag. 2014. V. 10. P. 325–331. https://doi.org/10.4103/0973-1296.137374
- Ko B.-S., Lu Y.-J., Yao W.-L., Liu T.-A., Tzean S.-S., Shen T.-L., Liou J.-Y. // PLoS ONE. 2013. V. 8. e76320. https://doi.org/10.1371/journal.pone.0076320
- Liao Y., Ling J., Zhang G., Liu F., Tao S., Han Z., Chen S., Chen Z., Le H. // Cell Cycle 2015. V. 14. P. 761–771. https://doi.org/10.1080/15384101.2014.1000097
- Baik J.-S., Mun S.-W., Kim K.-S., Park S.-J., Yoon H.-K., Kim D.-H., Park M.-K., Kim C.-H., Lee Y.-C. // J. Microbiol. Biotechnol. 2016. V. 26. P. 309–314. https://doi.org/10.4014/jmb.1507.07090
- Li Y., Li R., Zhu S., Zhou R., Wang L., Du J., Wang Y., Zhou B., Ma, L. // Oncol. Lett. 2015. V. 9. P. 2541–2547. https://doi.org/10.3892/ol.2015.3066
- Lee S.-J., Moon G.-S., Jung K.-H., Kim W.-J., Moon S.-K. // Food Chem. Toxicol. 2010. V. 48. P. 277– 283. https://doi.org/10.1016/j.fct.2009.09.042
- Lee S.-J., Kim S.-K., Choi W.-S., Kim W.-J., Moon S.-K. // Arch. Biochem. Biophys. 2009. V. 490. P. 103–109. https://doi.org/10.1016/j.abb.2009.09.001
- Kuchta R.D. // Curr. Protocols Chem. Biol. 2010. V. 2. P. 111–124. https://doi.org/10.1002/9780470559277.ch090203
- Klenow H. // Biochim. Biophys. Acta 1963. V. 76. P. 347–353.
- Rottman F., Guarino A.J. // Biochim. Biophys. Acta. 1964. V. 89. P. 465–472.
- Holbein S., Wengi A., Decourty L., Freimoser F.M., Jacquier A., Dichtl B. // RNA. 2009. V. 15. P. 837–849. https://doi.org/10.1261/rna.1458909
- Horowitz B., Goldfinger B.A., Marmur J. // Arch. Biochem. Biophys. 1976. V. 172. P. 143–148. https://doi.org/10.1016/0003-9861(76)90059-x
- Müller W.E., Seibert G., Beyer R., Breter H.J., Maidhof A., Zahn R.K. // Cancer Res. 1977. V. 37. P. 3824–3833.
- Müller W.E., Weiler B.E., Charubala R., Pfleiderer W., Leserman L., Sobol R.W., Suhadolnik R.J., Schröder // Biochemistry. 1991. V. 30. P. 2027–2033. https://doi.org/10.1021/bi00222a004
- Rose R. // N Engl J Med. 1999. V. 340. P. 115–126. https://doi.org/10.1056/NEJM199901143400207
- Kim H.G., Shrestha B., Lim S.Y., Yoon D.H., Chang W.C., Shin D.J., Han S.K., Park S.M., Park J.H., Park H.I., Sung J.M., Jang Y., Chung N., Hwang K.C., Kim T.W. // Eur J Pharmacol. 2006. V. 545. P. 192–199. https://doi.org/10.1016/j.ejphar.2006.06.047
- Nair C.N., Panicali D.L. // J Virol. 1976. V. 20. P. 170–176. https://doi.org/10.1128/JVI.20.1.170-176.1976
- Richardson L.S., Ting R.C., Gallo R.C., Wu A.M. // Int. J. Cancer. 1975. V. 15. P. 451–456. https://doi.org/10.1002/ijc.2910150311
- Hashimoto K., Simizu B. // Arch Virol. 1976. V. 52. P. 341–345. https://doi.org/10.1007/BF01315623
- Leinwand, L., Ruddle, F.H. // Science. 1977. V. 197. P. 381–383. https://doi.org/10.1126/science.17919
- Person A., Ben-Hamida F., Beaud G. // Nature 1980. V. 287. P. 355–357. 0.1038/287355a0
- Amgad M. Rabie // ACS Omega. 2022. V. 7. P. 2960– 2969. https://doi.org/10.1021/acsomega.1c05998
- Ramesh T., Yoo S.-K., Kim S.-W., Hwang S.-Y., Sohn S.H., Kim I. W., Kim S.-K. // Exp. Gerontol. 2012. V. 47. P. 979–987. https://doi.org/10.1016/j.exger.2012.09.003
- Niida A., Hiroko,T., Kasai M., Furukawa Y., Nakamura Y., Suzuki Y., Sugano S., Akiyama T. // Oncogene. 2004. V. 23. P. 8520–8526. https://doi.org/10.1038/sj.onc.1207892
- Qin P., Li X.-K., Yang H., Wang Z.-Y., Lu D.-X. // Molecules. 2019. V. 24. P. 2231. https://doi.org/10.3390/molecules24122231
- Li B., Hou Y., Zhu M., Bao H., Nie J., Zhang G.Y., Shan L., Yao Y., Du K., Yang H., Li M., Zheng B., Xu X., Xiao C., Du J. // Int. J. Neuropsychopharmacol. 2016. V. 19. P. 1–11. https://doi.org/10.1093/ijnp/pyv112
- Ahn Y.J., Park S.J., Lee S.G., Shi S.C., Choi D.H. // J. Agric. Food Chem. 2000. V. 48. P. 2744–2748. https://doi.org/10.1021/jf990862n
- Dong Y., Jing T., Meng Q., Liu C., Hu S., Ma Y., Liu Y., Lu J., Cheng Y., Wang D., Teng L. // Biomed. Res. Int. 2014, V. 2014. 160980. https://doi.org/10.1155/2014/160980
- Shin S., Lee S., Kwon J., Moon S., Lee C.K., Cho K., Ha N.J., Kim K. // Immune Netw. 2009. V. 9. P. 98–105. https://doi.org/10.4110/in.2009.9.3.98
- Yun Y.H., Han S.H., Lee S.J., Ko S.K., Lee C.K., Ha N.J., Kim K.J. // Nat. Prod. Sci. 2003. V. 9. P. 291–298.
- Lee H.J., Burger P., Vogel M., Friese K., Bruning A. // Investig. New Drugs. 2012. V. 30. P. 1917–1925. https://doi.org/10.1007/s10637-012-9859-x
- Lui J.C., Wong J.W., Suen Y.K., Kwok T.T., Fung K.P., Kong S.K. // Arch. Toxicol. 2007. V. 81. P. 859–865. https://doi.org/10.1007/s00204-007-0214-5
- Dalla Rosa, L. da Silva A.S., Gressler L.T., Oliveira C.B., Dambros M.G., Miletti L.C., Franca R.T., Lopes S.T., Samara Y.N., da Veiga M.L., Monteiro S. G. // Parasitology. 2013. V. 140. P. 663–671. https://doi.org/10.1017/S0031182012001990
- Hassan S. El Khadem, El Sayed H. El Ashry // Carbohydr. Research, 1973. V. 29, Issue 2. P. 525–527. https://doi.org/10.1016/S0008-6215(00)83043-8
- Tsai Y.J., Lin L.C., Tsai T.H. // J. Agric. Food Chem. 2010. V. 58. P. 4638–4643. https://doi.org/10.1021/jf100269g
- Dickinson M., Holly F. // J. Med. Chem. 1967. V. 275. P. 1165−1167. https://doi.org/10.1021/jm00318a042
- Gillerman I., Fischer B. // J. Med. Chem. 2011. V. 54. P. 107−121. https://doi.org/10.1021/jm101286g
- Vodnala S.K., Lundback T., Yeheskieli E., Sjoberg B., Gustavsson A.L., Svensson R., Olivera G.C., Eze A.A., de Koning H.P., Hammarstrom L.G., Rottenberg M.E. // J. Med. Chem. 2013. V. 56. P. 9861–9873. https://doi.org/10.1021/jm401530a
- Denisova A.O., Tokunova Y.A., Fateev I.V., Breslav A.A., Leonov V.N., Dorofeeva E.V., Lutonina O.I., Muzyka I. S., Esipov R.S., Kayushin A.L., Konstantinova I.D., Miroshnikov I.A., Stepchenko V.A., Mikhailopulo I.A. // Synthesis. 2017. V. 49. P. 4853–4860. https://doi.org/10.1055/s-0036-1590804
- Robins M.J., Wilson J.S., Madej D., Low N.H., Hansske F., Wnuk S.F. // J. Org. Chem. 1995. V. 60. P. 7902−7908. https://doi.org/10.1021/jo00129a034
- Berzin V. B., Dorofeeva E. V., Leonov V. N., Miroshnikov A. I. // Russ. J. Bioorg. Chem. 2009. P. 193– 196. https://doi.org/10.1134/s1068162009020071
- Hori N., Watanabe M., Sunagawa K., Uehara K., Mikami Y. // J. Biotechnol., 1991. V. 17. P. 121–131. https://doi.org/10.1016/0168-1656(91)90003-E
- Bzowska A., Kulikowska E., Shugar D. // Pharmacol. Ther., 2000. V. 88. P. 349–425. https://doi.org/10.1016/s0163-7258(00)00097-8
- Taran S.A., Verevkina K.N., Feofanov S.A., Miroshnikov A.I. // Russ. J. Bioorg. Chem. 2009. V. 35. P. 739–745. https://doi.org/10.1134/S1068162009060107
- Del Arco J., Fernández-Lucas J. // Appl. Microbiol. Biotechnol. 2018. V. 102. P. 7805–7820. https://doi.org/10.1007/s00253-018-9242-8
- Xu L., Li H.M., Lin J. // World J. Microbiol. Biotechnol. 2023. V. 39. P. 286. https://doi.org/10.1007/s11274-023-03721-1
- Zlatev I., Vasseur J.-J., Morvan F. // Tetrahedron Lett. 2008. V. 49. P. 3288–3290. https://doi.org/10.1016/j.tetlet.2008.03.079
- Fathi R., Jordan F. // J. Org. Chem. 1986. V. 51. P. 4143–4146. https://doi.org/10.1021/jo00372a008
- Esipov R.S., Gurevich A.I., Chuvikovsky D.V., Chupova L.A., Muravyova T.I., Miroshnikov A.I // Protein Expr. Purif. 2002. V. 24. P. 56–60. https://doi.org/10.1006/prep.2001.1524
Arquivos suplementares
