Quantum-chemical calculations of direct spin–spin coupling constants 195Pt–13C in the platinum complexes: possibilities and restraints

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Calculational protocols are proposed for the estimation of direct spin–spin coupling constants 1JPtC in the platinum complexes with practically significant accuracy. To attain a good accuracy, calculations are required within the framework of a fully relativistic four-component level of the theory (RMSE = 24.7 Hz (2%)). A scalar relativistic approximation can be used as an alternative, but the accuracy will appreciably be lower (RMSE = 50.5 Hz (5%)).

Толық мәтін

Рұқсат жабық

Авторлар туралы

S. Kondrashova

Kazan Scientific Center, Russian Academy of Sciences

Email: lsk@iopc.ru

Arbuzov Institute of Organic and Physical Chemistry

Ресей, Kazan

Sh. Latypov

Kazan Scientific Center, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: lsk@iopc.ru

Arbuzov Institute of Organic and Physical Chemistry

Ресей, Kazan

Әдебиет тізімі

  1. Wang X., Guo Z. // Chem. Soc. Rev. 2013. V. 42. P. 202.
  2. De Castro F., De Luca E., Benedetti M. et al. // Coord. Chem. Rev. 2022. V. 451. P. 214276.
  3. Seah J.W.K., Lee J.X.T., Li Y. et al. // Inorg. Chem. 2021. V. 60. P. 17276.
  4. Bagno A., Rastrelli F., Saielli G. // J. Org. Chem. 2007. V. 72. P. 7373.
  5. Balandina A., Kalinin A., Mamedov V. et al. // Magn. Reson. Chem. 2005. V. 43. P. 816.
  6. Lodewyk M.W., Siebert M.R., Tantillo D.J. // Chem. Rev. 2011. V. 112. P. 1839.
  7. Chimichi S., Boccalini M., Matteucci A. et al. // Magn. Reson. Chem. 2010. V. 48. P. 607.
  8. Semenov V.A., Krivdin L.B. // Magn. Reson. Chem. 2019. V. 58. P. 56.
  9. Hoffmann F., Li D.-W., Sebastiani D. et al. // J. Phys. Chem. A. 2017. V. 121. P. 3071.
  10. Latypov S.K., Polyancev F.M., Yakhvarov D.G. et al. // Phys. Chem. Chem. Phys. 2015. V. 17. P. 6976.
  11. Kondrashova S.A., Polyancev F.M., Ganushevich Y.S. et al. // Organometallics. 2021. V. 40. P. 1614.
  12. Latypov S.K., Kondrashova S.A., Polyancev F.M. et al. // Organometallics. 2020. V. 39. P. 1413.
  13. Payard P.-A., Perego L.A., Grimaud L. et al. // Organometallics. 2020. V. 39. P. 3121.
  14. Kondrashova S.A., Latypov S.K. // Organometallics. 2023. V. 42. P. 1951.
  15. Kondrashova S.A., Polyancev F.M., Latypov S.K. // Molecules. 2022. V. 27. P. 2668.
  16. Krivdin L.B. // Russ. Chem. Rev. 2021. V. 90. P. 1166.
  17. Helgaker T., Jaszuński M., Pecul M. // Prog. Nucl. Magn. Reson. Spectrosc. 2008. V. 53. P. 249.
  18. Rusakova I.L. // Magnetochemistry. 2022. V. 8. P. 50.
  19. Русаков Ю.Ю., Кривдин Л.Б. // Успехи химии. 2013. Т. 82. С. 99.
  20. Krivdin L.B., Contreras R.H. // Annu. Rep. NMR Spectrosc. 2007. P. 133.
  21. Русаков И.Л., Русаков Ю.Ю., Кривдин Л.Б. // Успехи химии. 2016. Т. 85. С. 356.
  22. Calculation of NMR and EPR Parameters / Eds Kaupp M., Buhl M., Malkin V.G. Weinheim: Wiley, 2004.
  23. Klepach T., Zhang W., Carmichael I. et al. // J. Org. Chem. 2008. V. 73. P. 4376.
  24. Del Bene J.E., Alkorta I., Elguero J. // J. Phys. Chem. A. 2010. P. 2637.
  25. Helgaker T., Jaszuński M., Świder P. // J. Org. Chem. 2016. P. 11496.
  26. Deng W., Cheeseman J.R., Frisch M.J.J. // Chem. Theory Comput. 2006. V. 2. P. 1028.
  27. Kutateladze A.G., Mukhina O.A. // J. Org. Chem. 2015. V. 80. P. 5218.
  28. Kutateladze A.G., Reddy D.S. // J. Org. Chem. 2017. V. 82. P. 3368.
  29. Bally T., Rablen P.R. // J. Org. Chem. 2011. V. 76. P. 4818.
  30. San Fabián J., García de la Vega J.M., Suardíaz R. et al. // Magn. Reson. Chem. 2013. V. 51. P. 775.
  31. Carvalho J., Paschoal D., Guerra C.F. et al. // Chem. Phys. Lett. 2020. V. 745. P. 137279.
  32. Silva J.H.C., Dos Santos H.F., Paschoal D.F.S. // Magnetochemistry. 2021. V. 7. P. 148.
  33. Vícha J., Straka M., Munzarová M.L. et al. // J. Chem. Theory Comput. 2014. V. 10. P. 1489.
  34. Jia Y.-X., Yang X.-Y., Tay W.S. et al. // Dalton Trans. 2016. V. 45. P. 2095.
  35. Jia Y.-X., Li B.-B., Li Y. et al. // Organometallics. 2014. V. 33. P. 6053.
  36. Khandogin J., Ziegler T.A. // J. Phys. Chem. A. 1999. V. 104. P. 113.
  37. Autschbach J., Le Guennic B. // J. Am. Chem. Soc. 2003. V. 125. P. 13585.
  38. Autschbach J., Ziegler T. // J. Am. Chem. Soc. 2001. V. 123. P. 3341.
  39. Moncho S., Autschbach J.J. // Chem. Theory Comput. 2009. V. 6. P. 223.
  40. Paschoal D., Guerra C.F., de Oliveira M.A.L. et al. // J. Comput. Chem. 2016. V. 37. P. 2360.
  41. Kohn W., Sham L.J. // Phys. Rev. 1965. V. 140. P. A1133.
  42. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 16. Revision A.03. Wallingford (CT, USA): Gaussian, Inc., 2016.
  43. Adamo C., Barone V. // J. Chem. Phys. 1999. V. 110. P. 6158.
  44. Hehre W.J., Ditchfield R., Pople J.A. // J. Chem. Phys. 1972. V. 56. P. 2257.
  45. Clark T., Chandrasekhar J., Spitznagel G.W. et al. // J. Comput. Chem. 1983. V. 4. P. 294.
  46. Pritchard B.P., Altarawy D., Didier B. et al. // J. Chem. Inf. Model. 2019. V. 59. P. 4814.
  47. Feller D. // J. Comput. Chem. 1996. V. 17. P. 1571.
  48. Schuchardt K.L., Didier B.T., Elsethagen T. et al. // J. Chem. Inf. Model. 2007. V. 47. P. 1045.
  49. Hansen A.E., Bouman T.D. // J. Chem. Phys. 1985. V. 82. P. 5035.
  50. Malkin V.G., Malkina O.L., Reviakine R. et al. MAG-ReSpect. Version 5.1.0. 2019.
  51. Dyall K.G. // Theor. Chem. Acc. 2004. V. 112. P. 403.
  52. Hoogervorst W.J., Elsevier C.J., Lutz M. et al // Organometallics. 2001. V. 20. P. 4437.
  53. Zhang X., Wright A.M., DeYonker N.J. et al // Organometallics. 2012. V. 31. P. 1664.
  54. Jia Y.-X., Yang X.-Y., Tay W. S. et al // Dalton Trans. 2016. V. 45. P. 2095.
  55. Brendel M., Engelke R., Desai V.G. et al // Organometallics. 2015. V. 34. P. 2870.
  56. Green M., Howard J.A.K., Mitrprachachon P. et al // Dalton Trans. 1979. P. 306.
  57. Ogoshi S., Morita M., Kurosawa H. // J. Am. Chem. Soc. 2003. V. 125. P. 9020.
  58. de Berrêdo R.C., Jorge F.E. // J. Mol. Struc-THEOCHEM. 2010. V. 961, P. 107.
  59. Noro T., Sekiya M., Koga T. // Theor. Chem. Acc. 2013. P. 132.
  60. Repisky M., Komorovsky S., Kadek M. et al. // J. Chem. Phys. 2020. P. 152.
  61. Кривдин Л.Б., Семенов В.А., Самульцев Д.О. // Сб. науч. тр. Ангарского гос. техн. ун-та. 2020. Т. 1. С. 87.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Scheme 1. Model complexes of platinum (I–IX).

Жүктеу (126KB)
3. Fig. 1. Correlation of calculated at the PBE0/{6-311G(2d), Pt(NMR-DKH)} level and experimental 1JPtC for the test set of Pt complexes.

Жүктеу (120KB)
4. Fig. 2. Correlation of calculated at the PBE0/{6-311G(2d), Pt(Jorge-DZP)} level and experimental 1JPtC for the test set of Pt complexes.

Жүктеу (116KB)
5. Fig. 3. Correlation of calculated at the PBE0/{6-311G(2d), Pt(Sapporo-DKH3-DZP)} level and experimental 1JPtC for the test set of Pt complexes.

Жүктеу (118KB)
6. Fig. 4. Correlation of calculated at the mDKS/TZ_DZ level and experimental 1JPtC for the test set of Pt-complexes.

Жүктеу (105KB)

© Российская академия наук, 2025