Quantum-chemical calculations of direct spin–spin coupling constants 195Pt–13C in the platinum complexes: possibilities and restraints

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Calculational protocols are proposed for the estimation of direct spin–spin coupling constants 1JPtC in the platinum complexes with practically significant accuracy. To attain a good accuracy, calculations are required within the framework of a fully relativistic four-component level of the theory (RMSE = 24.7 Hz (2%)). A scalar relativistic approximation can be used as an alternative, but the accuracy will appreciably be lower (RMSE = 50.5 Hz (5%)).

Full Text

Restricted Access

About the authors

S. A. Kondrashova

Kazan Scientific Center, Russian Academy of Sciences

Email: lsk@iopc.ru

Arbuzov Institute of Organic and Physical Chemistry

Russian Federation, Kazan

Sh. K. Latypov

Kazan Scientific Center, Russian Academy of Sciences

Author for correspondence.
Email: lsk@iopc.ru

Arbuzov Institute of Organic and Physical Chemistry

Russian Federation, Kazan

References

  1. Wang X., Guo Z. // Chem. Soc. Rev. 2013. V. 42. P. 202.
  2. De Castro F., De Luca E., Benedetti M. et al. // Coord. Chem. Rev. 2022. V. 451. P. 214276.
  3. Seah J.W.K., Lee J.X.T., Li Y. et al. // Inorg. Chem. 2021. V. 60. P. 17276.
  4. Bagno A., Rastrelli F., Saielli G. // J. Org. Chem. 2007. V. 72. P. 7373.
  5. Balandina A., Kalinin A., Mamedov V. et al. // Magn. Reson. Chem. 2005. V. 43. P. 816.
  6. Lodewyk M.W., Siebert M.R., Tantillo D.J. // Chem. Rev. 2011. V. 112. P. 1839.
  7. Chimichi S., Boccalini M., Matteucci A. et al. // Magn. Reson. Chem. 2010. V. 48. P. 607.
  8. Semenov V.A., Krivdin L.B. // Magn. Reson. Chem. 2019. V. 58. P. 56.
  9. Hoffmann F., Li D.-W., Sebastiani D. et al. // J. Phys. Chem. A. 2017. V. 121. P. 3071.
  10. Latypov S.K., Polyancev F.M., Yakhvarov D.G. et al. // Phys. Chem. Chem. Phys. 2015. V. 17. P. 6976.
  11. Kondrashova S.A., Polyancev F.M., Ganushevich Y.S. et al. // Organometallics. 2021. V. 40. P. 1614.
  12. Latypov S.K., Kondrashova S.A., Polyancev F.M. et al. // Organometallics. 2020. V. 39. P. 1413.
  13. Payard P.-A., Perego L.A., Grimaud L. et al. // Organometallics. 2020. V. 39. P. 3121.
  14. Kondrashova S.A., Latypov S.K. // Organometallics. 2023. V. 42. P. 1951.
  15. Kondrashova S.A., Polyancev F.M., Latypov S.K. // Molecules. 2022. V. 27. P. 2668.
  16. Krivdin L.B. // Russ. Chem. Rev. 2021. V. 90. P. 1166.
  17. Helgaker T., Jaszuński M., Pecul M. // Prog. Nucl. Magn. Reson. Spectrosc. 2008. V. 53. P. 249.
  18. Rusakova I.L. // Magnetochemistry. 2022. V. 8. P. 50.
  19. Русаков Ю.Ю., Кривдин Л.Б. // Успехи химии. 2013. Т. 82. С. 99.
  20. Krivdin L.B., Contreras R.H. // Annu. Rep. NMR Spectrosc. 2007. P. 133.
  21. Русаков И.Л., Русаков Ю.Ю., Кривдин Л.Б. // Успехи химии. 2016. Т. 85. С. 356.
  22. Calculation of NMR and EPR Parameters / Eds Kaupp M., Buhl M., Malkin V.G. Weinheim: Wiley, 2004.
  23. Klepach T., Zhang W., Carmichael I. et al. // J. Org. Chem. 2008. V. 73. P. 4376.
  24. Del Bene J.E., Alkorta I., Elguero J. // J. Phys. Chem. A. 2010. P. 2637.
  25. Helgaker T., Jaszuński M., Świder P. // J. Org. Chem. 2016. P. 11496.
  26. Deng W., Cheeseman J.R., Frisch M.J.J. // Chem. Theory Comput. 2006. V. 2. P. 1028.
  27. Kutateladze A.G., Mukhina O.A. // J. Org. Chem. 2015. V. 80. P. 5218.
  28. Kutateladze A.G., Reddy D.S. // J. Org. Chem. 2017. V. 82. P. 3368.
  29. Bally T., Rablen P.R. // J. Org. Chem. 2011. V. 76. P. 4818.
  30. San Fabián J., García de la Vega J.M., Suardíaz R. et al. // Magn. Reson. Chem. 2013. V. 51. P. 775.
  31. Carvalho J., Paschoal D., Guerra C.F. et al. // Chem. Phys. Lett. 2020. V. 745. P. 137279.
  32. Silva J.H.C., Dos Santos H.F., Paschoal D.F.S. // Magnetochemistry. 2021. V. 7. P. 148.
  33. Vícha J., Straka M., Munzarová M.L. et al. // J. Chem. Theory Comput. 2014. V. 10. P. 1489.
  34. Jia Y.-X., Yang X.-Y., Tay W.S. et al. // Dalton Trans. 2016. V. 45. P. 2095.
  35. Jia Y.-X., Li B.-B., Li Y. et al. // Organometallics. 2014. V. 33. P. 6053.
  36. Khandogin J., Ziegler T.A. // J. Phys. Chem. A. 1999. V. 104. P. 113.
  37. Autschbach J., Le Guennic B. // J. Am. Chem. Soc. 2003. V. 125. P. 13585.
  38. Autschbach J., Ziegler T. // J. Am. Chem. Soc. 2001. V. 123. P. 3341.
  39. Moncho S., Autschbach J.J. // Chem. Theory Comput. 2009. V. 6. P. 223.
  40. Paschoal D., Guerra C.F., de Oliveira M.A.L. et al. // J. Comput. Chem. 2016. V. 37. P. 2360.
  41. Kohn W., Sham L.J. // Phys. Rev. 1965. V. 140. P. A1133.
  42. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 16. Revision A.03. Wallingford (CT, USA): Gaussian, Inc., 2016.
  43. Adamo C., Barone V. // J. Chem. Phys. 1999. V. 110. P. 6158.
  44. Hehre W.J., Ditchfield R., Pople J.A. // J. Chem. Phys. 1972. V. 56. P. 2257.
  45. Clark T., Chandrasekhar J., Spitznagel G.W. et al. // J. Comput. Chem. 1983. V. 4. P. 294.
  46. Pritchard B.P., Altarawy D., Didier B. et al. // J. Chem. Inf. Model. 2019. V. 59. P. 4814.
  47. Feller D. // J. Comput. Chem. 1996. V. 17. P. 1571.
  48. Schuchardt K.L., Didier B.T., Elsethagen T. et al. // J. Chem. Inf. Model. 2007. V. 47. P. 1045.
  49. Hansen A.E., Bouman T.D. // J. Chem. Phys. 1985. V. 82. P. 5035.
  50. Malkin V.G., Malkina O.L., Reviakine R. et al. MAG-ReSpect. Version 5.1.0. 2019.
  51. Dyall K.G. // Theor. Chem. Acc. 2004. V. 112. P. 403.
  52. Hoogervorst W.J., Elsevier C.J., Lutz M. et al // Organometallics. 2001. V. 20. P. 4437.
  53. Zhang X., Wright A.M., DeYonker N.J. et al // Organometallics. 2012. V. 31. P. 1664.
  54. Jia Y.-X., Yang X.-Y., Tay W. S. et al // Dalton Trans. 2016. V. 45. P. 2095.
  55. Brendel M., Engelke R., Desai V.G. et al // Organometallics. 2015. V. 34. P. 2870.
  56. Green M., Howard J.A.K., Mitrprachachon P. et al // Dalton Trans. 1979. P. 306.
  57. Ogoshi S., Morita M., Kurosawa H. // J. Am. Chem. Soc. 2003. V. 125. P. 9020.
  58. de Berrêdo R.C., Jorge F.E. // J. Mol. Struc-THEOCHEM. 2010. V. 961, P. 107.
  59. Noro T., Sekiya M., Koga T. // Theor. Chem. Acc. 2013. P. 132.
  60. Repisky M., Komorovsky S., Kadek M. et al. // J. Chem. Phys. 2020. P. 152.
  61. Кривдин Л.Б., Семенов В.А., Самульцев Д.О. // Сб. науч. тр. Ангарского гос. техн. ун-та. 2020. Т. 1. С. 87.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Scheme 1. Model complexes of platinum (I–IX).

Download (126KB)
3. Fig. 1. Correlation of calculated at the PBE0/{6-311G(2d), Pt(NMR-DKH)} level and experimental 1JPtC for the test set of Pt complexes.

Download (120KB)
4. Fig. 2. Correlation of calculated at the PBE0/{6-311G(2d), Pt(Jorge-DZP)} level and experimental 1JPtC for the test set of Pt complexes.

Download (116KB)
5. Fig. 3. Correlation of calculated at the PBE0/{6-311G(2d), Pt(Sapporo-DKH3-DZP)} level and experimental 1JPtC for the test set of Pt complexes.

Download (118KB)
6. Fig. 4. Correlation of calculated at the mDKS/TZ_DZ level and experimental 1JPtC for the test set of Pt-complexes.

Download (105KB)

Copyright (c) 2025 Российская академия наук