DFT-calculations of 31P NMR chemical shift of σ-donor phosphorus atoms in platinum complexes

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The scopes and limitations of the calculation approaches for estimating the 31P NMR shifts for σ-donor phosphorus atoms in platinum complexes are analyzed. It is shown that satisfactory accuracy can be obtained only within the fully relativistic formalism (mDKS) framework. Geometry optimization at the PBE0/{6-31+G(d); Pd(SDD)} level is optimal in terms of “price–quality”. The efficiency of the proposed approach is demonstrated for analyzing cis/trans-isomerism in platinum complexes.

Толық мәтін

Рұқсат жабық

Авторлар туралы

S. Kondrashova

Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: lsk@iopc.ru
Ресей, Kazan

Sh. Latypov

Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences

Email: lsk@iopc.ru
Ресей, Kazan

Әдебиет тізімі

  1. Konnick M.M., Bischof S.M., Yousufuddin M. et al. // J. Am. Chem. Soc. 2014. V. 136. P.10085. https://doi.org/10.1021/ja504368r
  2. De Castro F., De Luca E., Benedetti M. et al. // Coord. Chem. Rev. 2022. V. 451. P. 214276. https://doi.org/10.1016/j.ccr.2021.214276
  3. Phosphorus(III) ligands in homogeneous catalysis: design and synthesis / Kamer P.C.J., van Leeuwen P.W.N.M., eds. John Wiley & Sons, 2012.
  4. Mathey F. // Angew. Chem. Int. Ed. 2003. V. 42. P. 1578. https://doi.org/10.1002/anie.200200557
  5. Gillespie J.A., Zuidema E., van Leeuwen P.W. et al. // Phosphorus(III) ligands in homogeneous catalysis: Design and synthesis. John Wiley & Sons, 2012.
  6. Latypov S.K., Ganushevich Y., Kondrashova S. et al. // Organometallics. 2018. V. 37. P. 2348. https://doi.org/10.1021/acs.organomet.8b00319
  7. Halbert S., Copéret C., Raynaud C. et al. // J. Am. Chem. Soc. 2016. V. 138. P. 2261. https://doi.org/10.1021/jacs.5b12597
  8. Greif A.H., Hrobárik P., Kaupp M. // Chem. Eur. J. 2017. V. 23. P. 9790. https://doi.org/10.1002/chem.201700844
  9. Vícha J., Straka M., Munzarová M.L. et al. // J. Chem. Theory Comput. 2014. V. 10. P. 1489. https://doi.org/10.1021/ct400726y
  10. Bühl M., Kaupp M., Malkina O.L. et al. // J. Comput. Chem. 1999. V. 20. P. 91. https://doi.org/10.1002/(SICI)1096-987X(19990115) 20:1<91::AID-JCC10>3.0.CO;2-C
  11. Jensen F. Introduction to computational chemistry. John wiley& sons, 2017.
  12. Autschbach J. // Struct. Bond. 2004. V. 112. P. 1. https://doi.org/ 10.1007/b97936
  13. Calculation of NMR and EPR Parameters / Kaupp M., Buhl M., Malkin V. G. (ed.). Weinheim: Wiley, 2004.
  14. Semenov V.A., Krivdin L.B. // Magn. Reson. Chem. 2019. V. 58. P. 56. https://doi.org/10.1002/mrc.4922
  15. Chimichi S., Boccalini M., Matteucci A. et al. // Magn. Reson. Chem. 2010. V. 48. P. 607. https://doi.org/10.1002/mrc.2633
  16. Balandina A., Kalinin A., Mamedov V. et al. // Magn. Reson. Chem. 2005. V. 43. P. 816. https://doi.org/10.1002/mrc.1612
  17. Latypov S.K., Polyancev F.M., Yakhvarov D.G. et al. // Phys. Chem. Chem. Phys. 2015. V. 17. P. 6976. https://doi.org/10.1039/C5CP00240K
  18. Toukach F.V., Ananikov V.P. // Chem. Soc. Rev. 2013. V. 42. P. 8376. https://doi.org/10.1039/C3CS60073D
  19. Gordon C.P., Raynaud C., Andersen R.A. et al. // Acc. Chem. Res. 2019. V. 52. P. 2278. https://doi.org/10.1021/acs.accounts.9b00225
  20. Halbert S., Copéret C., Raynaud C. et al. // J. Am. Chem. Soc. 2016. V. 138. P. 2261. https://doi.org/10.1021/jacs.5b12597
  21. Pawlak T., Munzarová M.L., Pazderski L. et al. // J. Chem. Theory Comput. 2011. V. 7. P. 3909. https://doi.org/10.1021/ct200366n
  22. Vícha J., Novotný J., Straka M. et al. // Phys. Chem. Chem. Phys. 2015. V. 17. P. 24944. https://doi.org/10.1039/c5cp04214c
  23. Bagno A., Saielli G. // Phys. Chem. Chem. Phys. 2011. V. 13. P. 4285. https://doi.org/10.1039/C0CP01743D
  24. Krykunov M., Ziegler T., van Lenthe E. // J. Phys. Chem. A. 2009. V. 113. P. 11495. https://doi.org/10.1021/jp901991s
  25. Vaara J., Malkina O.L., Stoll H. et al. // J. Chem. Phys. 2001. V. 114. P. 61. https://doi.org/10.1063/1.1330208
  26. Buhl M., Kaupp M., Malkina O.L. et al. // J. Comput. Chem. 1999. V. 20. P. 91. https://doi.org/10.1002/(SICI)1096-987X(19990115) 20:1<91::AID-JCC10>3.0.CO;2-C
  27. Kaupp M., Malkina O.L., Malkin V.G. // J. Chem. Phys. 1997. V. 106. P. 9201. https://doi.org/10.1063/1.474053
  28. Autschbach J., Ziegler T. // Coord. Chem. Rev. 2003. V. 238. P. 83. https://doi.org/10.1016/S0010-8545(02)00287-4
  29. Krivdin L.B. // Russ. Chem. Rev. 2021. V. 90. P. 1166. https://doi.org/10.1070/RCR4976
  30. Semenov V.A., Samultsev D.O., Rusakova I.L. et al. // J. Phys. Chem. A. 2019. V. 123. P. 4908. https://doi.org/10.1021/acs.jpca.9b02867
  31. Kondrashova S.A., Polyancev F.M., Ganushevich Y.S. et al. // Organometallics. 2021. V. 40. P. 1614. https://doi.org/10.1021/acs.organomet.1c00074
  32. Latypov S.K., Kondrashova S.A., Polyancev F.M. et al. // Organometallics. 2020. V. 39. P. 1413. https://doi.org/10.1021/acs.organomet.0c00127
  33. Payard P.-A., Perego L.A., Grimaud L. et al. // Organometallics. 2020. V. 39. P. 3121. https://doi.org/10.1021/acs.organomet.0c00309
  34. Kondrashova S.A., Latypov S.K. // Organometallics. 2023. V. 42. P. 1951. https://doi.org/10.1021/acs.organomet.3c00186
  35. Kondrashova S.A., Polyancev F.M., Latypov S.K. // Molecules. 2022. V. 27. P. 2668. https://doi.org/10.3390/molecules27092668
  36. Komorovský S., Repiský M., Malkina O.L. et al. // J. Chem. Phys. 2008. V. 128. P. 104101. https://doi.org/10.1063/1.2837472
  37. Castro Aguilera A.C., Fliegl H., Cascella M. et al. // Dalton Trans. 2019. V. 48. P. 8076. https://doi.org/10.1039/C9DT00570F
  38. Sojka M., Nečas M., Toušek J. // J. Mol. Model. 2019. V. 25. P. 1. https://doi.org/ 10.1007/s00894-019-4222-1
  39. Kohn W., Sham L.J. // Phys. Rev. 1965. V. 140. P. A1133. https://doi.org/10.1103/PhysRev.140.A1133
  40. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 16. Revision A.03. Wallingford (CT, USA): Gaussian, Inc., 2016.
  41. Adamo C., Barone V. // J. Chem. Phys. 1999. V. 110. P. 6158. https://doi.org/ 10.1063/1.478522
  42. Hehre W.J., Ditchfield R., Pople J.A. // J. Chem. Phys. 1972. V. 56. P. 2257. https://doi.org/10.1063/1.1677527
  43. Pritchard B.P., Altarawy D., Didier B. et al. // J. Chem. Inf. Model. 2019. V. 59. P. 4814. https://doi.org/10.1021/acs.jcim.9b00725
  44. Feller D. // J. Comput. Chem. 1996. V. 17. P. 1571. https://doi.org/ 10.1002/(SICI)1096-987X(199610)17: 13<1571::AID-JCC9>3.0.CO;2-P
  45. Schuchardt K.L., Didier B.T., Elsethagen T. et al. // J. Chem. Inf. Model. 2007. V. 47. P. 1045. https://doi.org/10.1021/ci600510j
  46. Hansen A.E., Bouman T.D. // J. Chem. Phys. 1985. V. 82. P. 5035. https://doi.org/ 10.1063/1.448625
  47. Malkin V.G., Malkina O.L., Reviakine R. et al. MAG-ReSpect. Version 5.1.0, 2019.
  48. Dyall K.G. // Theor. Chem. Acc. 2004. V. 112. P. 403. https://doi.org/10.1007/s00214-004-0607-y
  49. Krivdin L.B. // Magn. Reson. Chem. 2022. V. 60. P. 733. https://doi.org/10.1002/mrc.5260
  50. Carvalho J., Paschoal D., Fonseca Guerra C. et al. // Chem. Phys. Lett. 2020. V. 745. P. 137279. https://doi.org/10.1016/j.cplett.2020.137279
  51. Silva J.H.C., Dos Santos H.F., Paschoal D.F.S. // Magnetochemistry. 2021. V. 7. P. 148. https://doi.org/10.3390/magnetochemistry7110148
  52. Paschoal D., Guerra C.F., de Oliveira M.A.L. et al. // J. Comput. Chem. 2016. V. 37. P. 2360. https://doi.org/10.1002/jcc.24461
  53. Tsipis A.C., Karapetsas I.N. // Dalton Trans. 2014. V. 43. P. 5409. https://doi.org/10.1039/C3DT53594K
  54. Wicht D.K., Paisner S.N., Lew B.M. et al. // Organometallics. 1998. V. 17. P. 652. https://doi.org/10.1021/om9708891
  55. Mukhopadhyay S., Lasri J., Guedes da Silva M.F.C. et al. // Polyhedron. 2008. V. 27. P. 2883. https://doi.org/10.1016/j.poly.2008.06.031
  56. Jia Y.-X., Yang X.-Y., Tay W.S. et al. // Dalton Trans. 2016. V. 45. P. 2095. https://doi.org/10.1039/C5DT02049B
  57. Crumpton-Bregel D.M., Goldberg K.I. // J. Am. Chem. Soc. 2003. V. 125. P. 9442. https://doi.org/10.1021/ja029140u
  58. Colebatch A.L., Cade I.A., Hill A.F. et al. // Organometallics. 2013. V. 32. P. 4766. https://doi.org/10.1021/om400406s
  59. Muenzner J.K., Rehm T., Biersack B. et al. // J. Med. Chem. 2015. V. 58. P. 6283. https://doi.org/10.1021/acs.jmedchem.5b00896
  60. Fuertes S., Chueca A.J., Sicilia V. et al. // Inorg. Chem. 2015. V. 54. P. 9885. https://doi.org/10.1021/acs.inorgchem.5b01655
  61. Kim Y.J., Park J.I., Lee S.C. et al. // Organometallics. 1999. V. 18. P. 1349. https://doi.org/ 10.1021/om980939h
  62. Bennett M.A., Bhargava S.K., Keniry M.A. et al. // Organometallics. 2008. V. 27. P. 5361. https://doi.org/10.1021/om8004806

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Correlation of calculated and experimental 31P NMR shifts: NR level (a); 4c-mDKS level at the stage of screening calculation (b).

Жүктеу (195KB)
3. Fig. 2. Correlation of calculated and experimental 31P NMR shifts: 4c-mDKS/TZ_DZ_UPC//PBE0/{6-311+G(2d); Pt(SDD)} (a), 4c-mDKS/TZ_DZ_UPC//PBE0/{6-31+G(d); Pt(SDD)} (PCM) (b).

Жүктеу (193KB)
4. Scheme 1. Model complexes of platinum (I–XI).

Жүктеу (185KB)
5. Scheme 2. Structure of complexes XII and XIII

Жүктеу (138KB)

© Российская академия наук, 2025