Synthesis of neutral binuclear two-chain helicate from the anionic Fe(III) complex of 5-chlorosalicylaldehyde thiosemicarbazone by electrocrystallization

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The electrocrystallization of salts of the anionic spin-variable complex [FeIII(L)2] (L is 5-chlorosalicylaldehyde thiosemicarbazone (Н25Cl-thsa)) with cations Cat+ = K+ (I), Me4N+ (II), and Et4N+ (III) affords crystals of the neutral binuclear two-chain helicate [FeIII2(L1)2]0 (IV) (L1 = (L‒2)‒(L) are transformed monoanionic and dianionic fragments of L, respectively, linked with each other by the disulfide S–S bridge), which are identified by XRD at 100 and 293 K as the same phase IV · n(H2O) (n ≤ 6) with close lattice parameters. “Fresh” crystals of the complex obtained from salt I correspond to the composition IV · 6(H2O) at 293 K, rapidly lose 50% water molecules, and decrepitate to fine crystalline fragments IV · 3(H2O). The structure of crystals IV · 6(H2O) is monoclinic (space group С2/c) and characterized by cavities filled with disordered water molecules, which amount to more than 20% of the total unit cell volume. Complex IV has the point symmetry group С2 and high-spin geometry of coordination nodes N4O2. As found by cyclic voltammetry, electrochemically inactive complex IV is formed by the two-electron oxidation of the [FeIII(5Cl-thsa)2] anion via the EEC mechanism.

Texto integral

Acesso é fechado

Sobre autores

N. Spitsyna

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: spitsina@icp.ac.ru
Rússia, Chernogolovka, Moscow oblast

M. Blagov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: spitsina@icp.ac.ru
Rússia, Chernogolovka, Moscow oblast

A. Lobach

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: spitsina@icp.ac.ru
Rússia, Chernogolovka, Moscow oblast

R. Manzhos

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: spitsina@icp.ac.ru
Rússia, Chernogolovka, Moscow oblast

A. Krivenko

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: spitsina@icp.ac.ru
Rússia, Chernogolovka, Moscow oblast

V. Lazarenko

National Research Center Kurchatov Institute

Email: spitsina@icp.ac.ru
Rússia, Moscow

L. Zorina

Osipyan Institute of Solid State Physics, Russian Academy of Sciences

Email: spitsina@icp.ac.ru
Rússia, Chernogolovka, Moscow oblast

S. Simonov

Osipyan Institute of Solid State Physics, Russian Academy of Sciences

Email: spitsina@icp.ac.ru
Rússia, Chernogolovka, Moscow oblast

Bibliografia

  1. van Koningsbruggen P.J., Maeda Y., Oshio H. // Top. Curr. Chem. 2004. V. 233. P. 259.
  2. Li Z.-Y., Dai J.-W., Shiota Y. et al. // Chem. Eur. J. 2013. V. 19. № 39. P. 12948.
  3. Jeong H., Kang Y., Kim J. // RSC Adv. 2019. V. 9. № 16. P. 9049.
  4. Heffetera P., Pape V. F.S., Enyedy E.A. et al. // Antioxidants & Redox Signaling. 2019. V. 30. № 8. P. 1.
  5. Chang T.M., Tomat E. // Dalton Trans. 2013. V. 42. № 22. P. 7846.
  6. Pedrido R., Romero M.J., Bermejo M.R. et al. // Chem. Eur. J. 2008. V. 14. № 2. P. 500.
  7. Leovac V. M., Bjelica L., Jovanović L. // Polyhedron. 1985. V. 4. P. 233.
  8. Kaya B., Kaya K., Koca A. et al. // Polyhedron. 2019. V. 173. P. 114130.
  9. Blagov M., Spitsyna N., Lazarenko V. et al. // Eur. J. Inorg. Chem. 2023. V. 26. № 23. P. e202300239.
  10. Cambridge Structural Database System. Version 3.0, 2021. https://www.ccdc.cam.ac.uk/
  11. Fujinami T., Nishi K., Kitashima R. et al. // Inorg. Chim. Acta. 2011. V. 376. P. 136.
  12. CrysAlisPro. Version 1.171.38. Rigaku Oxford Diffraction, 2015.
  13. Svetogorov R.D., Dorovatovskii P.V., Lazarenko V.A. // Cryst. Res. Technol. 2020. V. 55. P. 1900184.
  14. Kabsch W. // Acta Crystallogr. D. 2010. V. 66. P. 125.
  15. Sheldrick G.M. // Acta Crystallogr. A. 2008. V. 64. P. 112.
  16. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
  17. Spek A.L. // Acta Crystallogr. C. 2015. V. 71. P. 9.
  18. Зеленцов В.В., Аблов А.В., Турта К.И. и др. // Журн. неорган. хим. 1972. Т. 17. № 7. С. 1929.
  19. Spitsyna N.G., Blagov M.A., Lazarenko V.A. et al. // Inorg. Chem. 2021. V. 60. № 23. P. 17462.
  20. Krivenko A. G., Manzhos R. A., Kochergin V. K. // Russ. J. Electrochem. 2019. V. 55. № 7. P. 663.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Scheme 1. Synthesis of neutral binuclear complex IV from the anionic complex [FeIII(5Cl-thsa)2]–.

Baixar (146KB)
3. Scheme 2. Ligand (L1)‒3 in complex IV. Fragments 1 and 2 are monoanionic and dianionic, respectively.

Baixar (70KB)
4. Fig. 1. CVAs measured in solutions containing 1 mM K[Fe(5Cl-thsa)2] (I), 1 mM Me4N[Fe(5Cl-thsa)2] (II) and 1 mM Et4N[Fe(5Cl-thsa)2] (III) and 0.25 M Bu4NPF6 in CH3CN, ν = 100 mV/s. The dotted line shows the curve L obtained in a solution of 1 mM H25Cl-thsa + 0.25 M Bu4NPF6 in CH3CN under the same experimental conditions.

Baixar (160KB)
5. Fig. 2. CVAs measured at different potential scan rates in a solution of 1 mM Me4N[Fe (5Cl-thsa)2] + 0.25 M Bu4NPF6 in CH3CN (a). Dependence of the cathodic peak current K1 on the square root of the potential scan rate (b). Dependences of the potential difference of the peaks A1 and K1 and the potential difference of the oxidation-reduction peaks of ferrocene on the potential scan rate (c); the dotted lines show the theoretical ΔE, ν-dependences for the k values ​​given next to the curves in cm/s.

Baixar (197KB)
6. Fig. 3. Independent part of the IV molecule with heteroatom designations (293 K, thermal ellipsoids at 30% level). The ground position of the disordered molecule with higher population is highlighted by black bonds, hydrogens of CH groups are not shown. Symmetry operation: * 1 – x, y, 0.5 – z.

Baixar (294KB)
7. Fig. 4. Λ and Δ enantiomers of complex IV in the racemic structure (only positions with higher occupancy are shown).

Baixar (116KB)
8. Fig. 5. Volumetric channels along the a direction in structure IV (positions of molecules with lower occupancy and hydrogen atoms are not shown).

Baixar (465KB)

Declaração de direitos autorais © Российская академия наук, 2025