Analysis of the physicochemical and optical characteristics, as well as the adhesion properties of YAG : Ce3+ phosphors for laser illumination devices

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The present scientific article encompasses an analysis of the physicochemical and optical characteristics, as well as adhesion properties of two luminescent materials based on yttrium aluminum garnet, doped with cerium. The aim of the study was to determine the potential usage of these luminescent materials in laser lighting devices. To achieve this, the luminescence spectrum and color diagrams were analyzed when the luminescent materials were subjected to laser radiation with various power and current values. The results revealed that both examined luminescent materials possess high luminous efficiency when current is applied. However, after six months of operation, the luminescent systems exhibited differences in their adhesion properties. Additionally, the study produced a block diagram of a device designed to analyze the physicochemical parameters of laser luminescent systems under the influence of laser radiation with λ = 405–450 nm. With the aid of this device, data on the characteristics of the luminescent materials under different current values were obtained, providing a more precise control over their degradation processes. The investigation demonstrated that both examined luminescent materials can be utilized in laser lighting devices, but one of the luminescent material samples proved to be a more stable and durable material due to its better adhesion with the substrate. The proposed results can be beneficial in the development of new laser lighting tools.

全文:

受限制的访问

作者简介

S. Zuev

MIREA — Russian Technological University; Central Scientific Research Automobile and Automotive Engines Institute

编辑信件的主要联系方式.
Email: sergei_zuev@mail.ru
俄罗斯联邦, Moscow; Moscow

D. Prokhorov

MIREA — Russian Technological University; Central Scientific Research Automobile and Automotive Engines Institute

Email: sergei_zuev@mail.ru
俄罗斯联邦, Moscow; Moscow

参考

  1. H.K. Jung, C.H. Kim, A-Ra Hong et al. Ceram. Int., 45 (8), 9846 (2019). https://doi.org/10.1016/j.ceramint.2019.02.023
  2. M. Upasani, B. Butey, S.V. Moharil. Optik, 127 (4), 2004 (2019). https://doi.org/10.1016/j.ijleo.2015.11.070
  3. N.K. Mishra, M.M. Upadhyay, S. Kumar et al. Spectrochim. Acta A Mol. Biomol. Spectrosc., 282, 121664, (2022). https://doi.org/10.1016/j.saa.2022.121664
  4. Y.A. Uspenskaya, E.V. Edinach, A.S. Gurin et al. J. Lumin., 251, 119166, (2022). https://doi.org/10.1016/j.jlumin.2022.119166
  5. G. Liu, B. Wang, J. Li et al. Phys. B Condens. Matter, 603, 412775, (2021). https://doi.org/10.1016/j.physb.2020.412775
  6. T. Pier, J. Hopster, T. Jüstel. J. Lumin., 266, 120315, (2024). https://doi.org/10.1016/j.jlumin.2023.120315
  7. S.M. Zuev, A.V. Kretushev. Opt. Spectrosc., 131(3), 346, (2023). https://doi.org/10.61011/EOS.2023.03.56185.4616-22
  8. C. Michail, K. Ninos, N. Kalyvas et al. Microelectron. Reliab. 109, 113658, (2020). https://doi.org/10.1016/j.microrel.2020.113658
  9. V.A. Tarala, A.A. Kravtsov, F.F. Malyavin et al. Opt. Mater., 143, 114231, (2023). https://doi.org/10.1016/j.optmat.2023.114231
  10. S. Peter, A. Patel, A. Kitai. J. Lumin., 211, 82 (2019). https://doi.org/10.1016/j.jlumin.2019.03.024
  11. L.E. Muresan, M. Ayvacikli, J. Garcia Guinea et al. Opt. Mater., 74, 150, (2017). https://doi.org/10.1016/j.optmat.2017.01.044
  12. Y.C. Chen, Y.-T. Nien, J. Eur. Ceram. Soc., 37(1), 223 (2017). https://doi.org/10.1016/j.jeurceramsoc.2016.07.032
  13. A. Katelnikovas, S. Sakirzanovas, D. Dutczak et al. J. Lumin., 136, 17 (2013). https://doi.org/10.1016/j.jlumin.2012.11.012
  14. M.A. Almessiere, N.M. Ahmed, I. Massoudi et al. Optik, 158, 152 (2018). https://doi.org/10.1016/j.ijleo.2017.12.031
  15. Z. You, K. Yue, J. Zhang, etc., Optik, 176, 241 (2019). https://doi.org/10.1016/j.ijleo.2018.09.076
  16. Y.-T. Nien, Y.-C. Chen, I-C. Chiu., J. Alloys Compd., 797, 110 (2019). https://doi.org/10.1016/j.jallcom.2019.05.089
  17. Y.-K. Choi, P. Halappa, C. Shivakumara et al. Optik, 181, 1113 (2019). https://doi.org/10.1016/j.ijleo.2018.10.213
  18. Z. Chuluunbaatar, C. Wang, E.S. Kim et al. Int. J. Therm. Sci., 86, 307 (2014) https://doi.org/10.1016/j.ijthermalsci.2014.07.013
  19. W. Zhao, B. Xie, Y. Peng et al. Opt. Laser Technol., 157, 108689, (2023). https://doi.org/10.1016/j.optlastec.2022.108689
  20. K. Li, C. Shen. Optik, 123(7), 621 (2012). https://doi.org/10.1016/j.ijleo.2011.06.005
  21. W.F. Razumov. Russ. J. Phys. Chem. B, 17(1), 36, (2023). https://doi.org/10.1134/s199079312301027x
  22. A.S. Fionov, V.V. Kolesov, V.A. Fionova et al. Chem. Phys., 17(6), 1384, (2023). https://doi.org/10.31857/S0207401X2311002X
  23. A.S. Vetchinkin, S.Ya. Umansky, Yu.A. Chaykina, A.I. Shushin. Russ. J. Phys. Chem. B, 16(5), 945, (2022). https://doi.org/10.31857/S0207401X22090102
  24. V.I. Petinov, V.M. Timin, K.V. Bozhenko, A.N. Utenyshev. Russ. J. Phys. Chem. B, 18(2), 365, (2024). https://doi.org/10.31857/S0207401X24040015
  25. A.V. Lobanov, L.M. Apasheva, L.A. Smurova et al. Russ. J. Phys. Chem. B, 18(2), 516, (2024). https://doi.org/10.31857/S0207401X24040095

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Energy-dispersive X-ray spectrum of the LSID-560 phosphor.

下载 (210KB)
3. Fig. 2. Energy-dispersive X-ray spectrum of the FLS-540 sample.

下载 (241KB)
4. Fig. 3. Kinetic curves of current (a), voltage drop (b) and electric power (c) at I = 1.0 A of the device that allows analyzing the physicochemical parameters of laser phosphor systems for LSID-560, supplied to the laser diode.

下载 (117KB)
5. Fig. 4. The same as in Fig. 3, for FLS-540.

下载 (106KB)
6. Fig. 5. Luminescence spectra (a, c) and color diagrams (b, d) of luminophores LSID-560 and FLS-540 (c, d) when exposed to laser radiation with I = 1.0 A.

下载 (252KB)
7. Fig. 6. Dependence of the luminous flux (Φ) on the current supplied to the laser diode for phosphors LSID-560 (1) and FLS-540 (2).

下载 (58KB)
8. Fig. 7. General view of the luminescent film LSID-560 during its manufacture (a) and its time degradation after six months from the date of manufacture (b), associated with its adhesion and chemical properties; general view of the luminescent film FLS-540 during its manufacture (c) and after six months from the date of manufacture (d).

下载 (262KB)

版权所有 © Russian Academy of Sciences, 2025