Kinetics of the reaction of hydrogen evolution on steel in inhibited phosphoric acid solutions

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The kinetics was studied and the constants of the main stages of hydrogen separation and incorporation into steel in a solution of phosphoric acid containing a mixture of 1,2,4 triazole derivative IFKhAN-92 and KNCS were determined. The addition of IFKhAN-92 + KNCS mixture inhibits the reaction of cathodic reduction of hydrogen and its penetration into steel in H3PO4 solution. The inhibitory effect of this mixture is due to a decrease in the ratio of the hydrogen concentration in the metal phase to the degree of hydrogen filling of the surface. The decrease in the hydrogen concentration in the metal volume by the IFKhAN-92 + KNCS mixture determines the preservation of the plastic properties of steel during corrosion in H3PO4 solutions. The high efficiency of the IFKhAN-92 + KNCS composition, as inhibitors of cathodic reduction of hydrogen and its absorption, is the result of chemisorption of the organic component of the mixture on the surface of steel and the formation of a polymolecular protective layer.

全文:

受限制的访问

作者简介

Ya. Avdeev

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: avdeevavdeev@mail.ru
俄罗斯联邦, Moscow

T. Nenasheva

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: avdeevavdeev@mail.ru
俄罗斯联邦, Moscow

A. Luchkin

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: avdeevavdeev@mail.ru
俄罗斯联邦, Moscow

A. Panova

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: avdeevavdeev@mail.ru
俄罗斯联邦, Moscow

A. Marshakov

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: avdeevavdeev@mail.ru
俄罗斯联邦, Moscow

Yu. Kuznetsov

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: avdeevavdeev@mail.ru
俄罗斯联邦, Moscow

参考

  1. B.N. Popov, J.-W. Lee, M.B. Djukic. Handbook of Environmental Degradation of Materials (Third Edition). Elsevier Inc. 133 (2018). https://doi.org/10.1016/B978-0-323-52472-8.00007-1
  2. R.A. Cottis. Shreir’s Corrosion, Elsevier. 902 (2010). https://doi.org/10.1016/B978-044452787-5.00200-6
  3. E. Ohaeri, U. Eduok, J. Szpunar. Inter. J. Hydrogen Energy. 43(31), 14584 (2018). https://doi.org/10.1016/j.ijhydene.2018.06.064
  4. J. Aromaa, A. Pehkonen, S. Schmachtel et al. Adv. Mater. Sci. Eng. 2018, Article ID 3676598 (2018). https://doi.org/10.1155/2018/3676598
  5. E.I. Rudenko, N.V. Dohlikova, A.K. Gatin et al. Russ. J. Phys. Chem. B, 17(4), 845 (2023). https://doi.org/10.1134/S1990793123040164
  6. N.V. Dokhlikova, S.A. Ozerin, S.V. Doronin et al. Russ. J. Phys. Chem. B, 16(3), 461 (2022). https://doi.org/10.1134/S1990793122030137
  7. N.V. Dokhlikova, A.K. Gatin, S.Yu. Sarvadiy et al. Russ. J. Phys. Chem. B, 15(4), 732 (2021). https://doi.org/10.1134/S1990793121040023
  8. N.V. Dokhlikova, A.K. Gatin, S.Yu. Sarvadiy et al. Russ. J. Phys. Chem. B, 16(2), 361 (2022). https://doi.org/10.1134/S1990793122020166
  9. N.V. Dokhlikova, A.K. Gatin, S.Yu. Sarvadii et al. Russ. J. Phys. Chem. B, 14(5), 733 (2020). https://doi.org/10.1134/S1990793120050036
  10. V.I. Vigdorovich, L.E. Tsygankova, D.V. Balybin et al. J. Electroanalytical Chem. 689, 117 (2013). https://doi.org/10.1016/j.jelechem.2012.10.021
  11. V.I. Vigdorovich, L.E. Tsygankova, D.V. Balybin. J. Electroanalytical Chem. 653(1-2), 1 (2011). https://doi.org/10.1016/j.jelechem.2011.01.026
  12. M.G. Silva, R.G. de Araujo, R.L. Silvério. J. Mater. Res. Technol. 16, 1324 (2022). https://doi.org/10.1016/j.jmrt.2021.12.068
  13. S. Hari Kumar, S. Karthikeyan, P.A. Vivekanand et al. Mater. Today: Proc. 36(4), 898 (2021). https://doi.org/10.1016/j.matpr.2020.07.027
  14. S. Hari Kumar, P.A. Vivekanand, V. Shobana et al. Res. J. Chem. Sci. 2(10), 87 (2012).
  15. S. Karthikeyan, P.A. Jeeva, K. Raja et al. JCSE 18, 8 (2015).
  16. V.I. Vigdorovich, L.E. Tsygankova, D.V. Balybon. Prot. Met. Phys. Chem. Surf. 47, 684 (2011). https://doi.org/10.1134/S2070205111050236
  17. P.A. Jeeva, G.S. Mali, R. Dinakaran et al. Int. J. Corros. Scale Inhib. 2019. V. 8. № 1. P. 1. https://doi.org/10.17675/2305-6894-2019-8-1-1
  18. M. Shyamala, P.K. Kasthuri. Int. J. Corros. 2012, Article ID 852827 (2012). https://doi.org/10.1155/2012/852827
  19. Ya.G. Avdeev, T.A. Nenasheva, A.Yu. Luchkin et al. Russ. J. Phys. Chem. B, 18, 111 (2024). https://doi.org/10.1134/S1990793124010044
  20. Ya.G. Avdeev, Yu.I. Kuznetsov. Int. J. Corros. Scale Inhib. 12(2), 366 (2023). https://doi.org/10.17675/2305-6894-2023-12-2-1
  21. A.V. Kuzin, I.G. Gorichev, V.A. Shelontsev et al. Moscow Univ. Chem. Bull., 76, 398 (2021). https://doi.org/10.3103/S0027131421060055
  22. A.V. Kuzin, I.G. Gorichev, Y.A. Lainer. Russ. Metall. 2013, 652 (2013). https://doi.org/ 10.1134/S0036029513090073
  23. A.V. Kuzin, A.V. Lobanov, V.A. Shelonzev et al. Russ. J. Phys. Chem. B. 18, 669 (2024). https://doi.org/10.1134/S1990793124700106
  24. Ya.G. Avdeev, M.V. Tyurina, Yu.I. Kuznetsov. Int. J. Corros. Scale Inhib. 3(4), 246 (2014). https://doi.org/10.17675/2305-6894-2014-3-4-246-253
  25. M.A.V. Devanathan, Z. Stachurski. Proc. R. Soc. Lond. A. 270А, 90 (1962). https://doi.org/10.1098/rspa.1962.0205
  26. M.A.V. Devanathan, Z. Stachurski. J. Electrochem. Soc. 111(5), 619 (1964). https://doi.org/10.1149/1.2426195
  27. R.N. Iyer, H.W. Pickering, M. Zamanzadeh. J. Electrochem. Soc., 136. 2463 (1989). https://doi.org/10.1149/1.2097429
  28. A.I. Marshakov, T.A. Nenasheva, A.A. Rybkina et al. Prot. Met., 43, 77 (2007). https://doi.org/10.1134/S0033173207010110
  29. A.I. Marshakov, T.A. Nenasheva. Prot. Met., 38, 556 (2002). https://doi.org/10.1023/A:1021265903879
  30. C.D. Wagner, L.E. Davis, M.V. Zeller at al. Surf. Inter. Face Anal. 3. 211 (1981). https://doi.org/10.1002/sia.740030506
  31. D.A. Shirley. Phys. Rev. B. 5, 4709 (1972). https://doi.org/10.1103/PhysRevB.5.4709
  32. N. A. Kolpakova, T.S. Minakova. Thermodynamics and Kinetics of Sorption Concentrating (Tomsk Polytechnic Univ., Tomsk, 2011) [in Russian]
  33. B.N. Afanas’ev, Yu.P. Skobochkina, G.G. Serdyukova. Physicochemical bases of the action of corrosion inhibitors (Publishing house of UdGU, Izhevsk, 1990, 20) [in Russian].
  34. K. Kiuchi, R.B. McLellan. Acta Metall., 31, 961 (1983). https://doi.org/10.1016/0001-6160(83)90192-X
  35. Y.G. Avdeev, Y.I. Kuznetsov. Russ. J. Phys. Chem. A. 97, 413 (2023). https://doi.org/10.1134/S0036024423030056
  36. M.B. Bushuev, L.G. Lavrenova, V.N. Ikorskii et al., Russ. J. Coord. Chem., 30(4), 284 (2004). https://doi.org/10.1023/B:RUCO.0000022805.47477.75
  37. J.G. Haasnoot. Coord. Chem. Rev., 200–202, 131 (2000). https://doi.org/10.1016/S0010-8545(00)00266-6
  38. T. Huxel, S. Riedel, J. Lach et al., Z. Anorg. Allg. Chem., 638(6), 925 (2012). https://doi.org/10.1002/zaac.201200117
  39. C.B. Donker, J.G. Haasnoot, W.L Groeneveld. Transition Met. Chem., 5, 368 (1980). https://doi.org/10.1007/BF01396963

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Cathodic polarization curves on steel (1–4) and the dependence of the rate of hydrogen incorporation into it on the potential (1´–4´) in a 2M H3PO4 solution without additives (1, 1´) and in the same solution containing 5 mM IFKhAN-92 (2, 2´), 5 mM IFKhAN-92 + 0.5 mM KNCS (3, 3´), KNCS (4, 4´).

下载 (73KB)
3. Fig. 2. Anodic polarization curves on steel in a 2M H3PO4 solution without additives (1) and in the same solution containing 5 mM IFHAN-92 (2), 5 mM IFHAN-92 + 0.5 mM KNCS (3), 0.5 mM KNCS (4).

下载 (54KB)
4. Fig. 3. Equivalent electrical circuit and Nyquist diagrams of a steel electrode in a 2M H3PO4 solution (1), taken after introducing 5 μM IFKhAN-92 + 0.5 mM KNCS (2, 3) into the solution with different holding times (in min): 2 – 30, 3 – 60.

下载 (86KB)
5. Fig. 4. Adsorption isotherm of the mixture of IFHAN-92 inhibitors + 0.5 mM KNCS on low-carbon steel (E = –0.30 B) from a 2M H3PO4 solution: dots are the experimental dependence, straight line is the theoretical dependence constructed for the Temkin isotherm.

下载 (51KB)
6. Fig. 5. XPS spectra of Fe(2p3/2) and Fe(2p1/2) electrons of the steel surface in a 2M H3PO4 solution containing IFKhAN-92 + KNCS.

下载 (79KB)
7. Fig. 6. XPS spectra of O(1s) electrons of the steel surface in a 2M solution of H3PO4 + 5 mM IFKhAN-92 + 0.5 mM KNCS.

下载 (63KB)
8. Fig. 7. XPS spectra of N(1s) electrons of the steel surface in a 2M solution of H3PO4 + 5 mM IFKhAN-92 + 0.5 mM KNCS.

下载 (63KB)
9. Fig. 8. Proposed scheme of the structure of the protective layer of the IFHAN-92 inhibitor formed on steel in a 2M solution of H3PO4 + 5 mM IFHAN-92 + 0.5 mM KNCS.

下载 (135KB)

版权所有 © Russian Academy of Sciences, 2025