Evaluation of energetic potential of some tetrazine oxides as components of gun propellants. I. Two-component compositions

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Thermodynamic evaluation of the possibility of using furazanotetrazine dioxide and tetrazinotetrazine tetroxide in two-component compositions with different binders as gun propellants has been carried out. Such compositions allow very high force values, 1750 kJ/kg or more. But this is achieved at the cost of extremely high temperature of combustion products, above 5000 K, which is completely unacceptable for barrel systems. By increasing the binder content it is possible to reduce the temperature of gases to an acceptable level. However, the inevitable drop of force allows to consider such compositions only as mortar propellants, and for other systems the obtained compositions do not exceed the known ones in efficiency.

全文:

受限制的访问

作者简介

A. Astakhov

Reshetnev Siberian State University of Science and Technology

编辑信件的主要联系方式.
Email: alexastachov@mail.ru
俄罗斯联邦, Krasnoyarsk

D. Lempert

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Science

Email: alexastachov@mail.ru
俄罗斯联邦, Chernogolovka

参考

  1. M.S. Klenov, A.A. Voronin, A.M. Churakov, V.A. Tartakovsky. Russ. Chem. Rev., 2023, 92 (8), 1 (2023). https://doi.org/10.59761/RCR5089
  2. A.M. Churakov, S.L. Ioffe, V.A. Tartakovsky. Mendeleev Commun., 5 (6), 227 (1995). https://doi.org/10.1070/MC1995v005n06ABEH000539
  3. M.S. Klenov, A.A. Guskov, O.V. Anikin et al. Angew. Chem., 55 (38), 11472 (2016). https://doi.org/10.1002/anie.201605611
  4. V.I. Pepekin, Yu.N. Matyushin, T.V. Gubina. Russ. J. Phys. Chem. B, 5 (1), 97 (2011). https://doi.org/10.1134/S1990793111020102
  5. A.S. Zharkov, P.I. Kalmykov, Yu.N. Burtsev et al. Russ. Chem. Bull., 63 (8), 1785 (2014). https://doi.org/10.1007/s11172-014-0668-6
  6. N.V. Chukanov, P.I. Kalmykov, G.V. Shilov et al. Russ. J. Appl. Chem., 89 (4), 566 (2016). https://doi.org/10.1134/S1070427216040078
  7. P. Politzer, P. Lane, and J.S. Murray. Central Eur. J. Energetic Mater., 10 (1), 37 (2013).
  8. K.O. Christe, D.A. Dixon, M. Vasiliu et al. Prop., Expl., Pyrotech., 40 (4), 463 (2015). https://doi.org/10.1002/prep.201400259
  9. D.B. Lempert, G.N. Nechiporenko, S.I. Soglasnova. Khim. Fizika, 23 (5), 75 (2004) [in Russian].
  10. D.B. Lempert, E.M. Dorofeenko, S.I. Soglasnova. Omsk Sci. Bull. Ser. Aviation-Rocket and Power Engineering, 2 (3), 58 (2018) [in Russian]. https://doi.org/10.25206/2588-0373-2018-2-3-58-62
  11. G.G. Valeev, V.F. Sopin, B.A. Sokov. Artilleriiskie metatelnye zaryady (Artillery propellant charges) (FGUP GosNIIKhP, Kazan’, 2004) [in Russian].
  12. C.W. Sauer. Solid propellant containing organic oxidizers and polymeric fuel, US Pat. 3117044 (1964).
  13. V.V. Nedel’ko, V.V. Zakharov, B.L. Korsunskii et al. Russ. J. Phys. Chem. B, 7 (2), 113 (2013). https://doi.org/10.1134/S19907931130200480207401X13030060
  14. V.P. Zelenov, A.A. Lobanova, N.I. Lyukshenko, S.V. Sysolyatin, A. I. Kalashnikov. Russ. Chem. Bull., 57 (7), 1384 (2008). https://doi.org/10.1007/s11172-008-0180-y
  15. V.A. Teselkin. Combust., Explos., Shock Waves, 45 (5), 632 (2009). https://doi.org/10.1007/s10573-009-0076-7
  16. V.N. Simonenko, P.I. Kalmykov, A.B. Kiskin et al. Combust., Explos., Shock Waves, 50 (3), 306 (2014). https://doi.org/10.1134/S0010508214030083
  17. D.V. Khakimov, A.V. Dzyabchenko, T.S. Pivina. Russ. Chem. Bull., 69 (2), 212 (2020). https://doi.org/10.1007/s11172-020-2748-0
  18. A.V. Kostochko, B.M. Kazban. Porokha, raketnye tverdye topliva i ikh svoistva. Fiziko-khimicheskie svoistva porokhov i raketnykh tverdykh topliv: uchebnoe posobie (Powders, solid rocket propellants and their properties. Physiko-chemical properties of powders and solid rocket propellants: tutorial guide) (INFRA-М, Moscow, 2022) [in Russian].
  19. V.N. Marshakov, V.G. Krupkin. Russ. J. Phys. Chim. B, 17 (4), 399 (2023). https://doi.org/10.1134/S1990793123020112
  20. D.B. Lempert, G.N. Nechiporenko, G.B. Manelis. Central Eur. J. Energetic Materials, 3 (4), 73 (2006).
  21. I.N. Zyuzin, I.Yu. Gudkova, D.B. Lempert. Russ. J. Phys. Chem. B, 15 (4), 611 (2021). https://doi.org/10.1134/S1990793121040138
  22. I.N. Zyuzin, V.M. Volokhov, D.B. Lempert. Russ. J. Phys. Chem. B, 15 (5), 810 (2021). https://doi.org/10.1134/S1990793121050109
  23. I.Yu. Gudkova, I.N. Zyuzin, D.B. Lempert. Russ. J. Phys. Chem. B, 16 (1), 58 (2022). https://doi.org/10.1134/S1990793122010067
  24. I.N. Zyuzin, I.Yu. Gudkova, D.B. Lempert. Russ. J. Phys. Chem. B, 16 (5), 902 (2022). https://doi.org/10.1134/S1990793122050141
  25. I.N. Zyuzin, I.Yu. Gudkova, D.B. Lempert. Russ. J. Phys. Chem. B, 16 (6), 1117 (2022). https://doi.org/10.1134/S1990793122060240
  26. T. Jarocz, A. Stolarczyk, A. Wawrzkiewicz-Jalowiecka, K. Pawlus, K. Miszczyszyn. Molecules, 24 (24), 4475 (2019). https://doi.org/10.3390/molecules24244475
  27. E. Diaz, P. Brousseau, G. Ampleman, R.E. Prud’homme. Prop., Expl., Pyrotech., 28 (3), 101 (2003). https://doi.org/10.1002/prep.200390015
  28. F. Schedlbauer. Prop., Expl., Pyrotech., 17 (4), 164 (1992). https://doi.org/10.1002/prep.19920170404
  29. G.V. Belov. Prop., Expl., Pyrotech., 23 (2), 86 (1998). https://doi.org/10.1002/(SICI)1521-4087(199804) 23:2<86::AID-PREP86>3.0.CO;2-2
  30. G.V. Belov. Termodinamicheskoe modelirovanie: metody, algoritmy, programmy (Thermodynamic modeling: methods, algorithms, software) (Nauchnyi Mir, Moscow, 2002) [in Russian].
  31. V.V. Kulakov, A.A. Efremov, E.I. Kashirina, O.Yu. Kashirina, Yu.I. Litvin. Artilleriiskoe vooruzhenie. Chast’ I. Minomety (Artillery armament. Part I. Mortars) (Prometei, Moscow, 2019) [in Russian].
  32. V.V. Kulakov, V.A. Shamanov, V.E. Utkin. Buksiruemye artilleriiskie orudiya 2А65 i 2А18 (Towed artillery systems 2A65 and 2A18) (Prometei, Moscow, 2022) [in Russian].
  33. S.V.Yurko, A.V. Bezlyud’ko, D.N. Il’yuschenko, R.I. Sharipov, I.N. Yankovskii. 125-mm tankovaya pushka 2А46М (125-mm tank gun 2A46M) (BNTU, Minsk, 2016) [in Russian].
  34. A.A. Korolev, V.G. Kucherov (editors). Fizicheskie osnovy ustroistva i funktsionirovaniya strelkovo-pushechnogo, artilleriiskogo i raketnogo oruzhiya. Chast’ I. Fizicheskie osnovy ustroistva i funktsionirovaniya strelkovo-pushechnogo i artilleriiskogo oruzhiya (Physical foundations of the design and functioning of small arms, cannon, artillery and missile weapons. Part I. Physical basis of the design and functioning of small arms, cannon and artillery weapons) (VSTU, Volgograd, 2002) [in Russian].
  35. Military explosives. Technical manual N9-1300-214 (Headquarters department of the army, Washington, DC, 1984).
  36. Propellant management guide (U.S. Army Defense Ammunition Center, Savanna, Illinois, 1998).
  37. E.-C. Koch. Prop., Expl., Pyrotech., 46 (2), 174 (2021). https://doi.org/10.1002/prep.202000220

补充文件

附件文件
动作
1. JATS XML
2. Formula

下载 (44KB)
3. Fig. 1. Calculated relationship between the powder force f and the temperature of the powder gases Tc at a pressure of 100 MPa for compositions based on FTDO (solid lines) and TTTO (dashed lines) with binders based on nitrocellulose: 1 – pyroxylin (N14.1%), 2 – collodion (N12.0%), 3 – ballistic powder NB. In this and subsequent figures, markers indicate literary data for some standard and experimental foreign (♦) and domestic (●) powders [34–37].

下载 (193KB)
4. Fig. 2. Calculated relationship between the powder force f and the temperature of the powder gases Tc at pressures of 100, 300 and 500 MPa for compositions based on FTDO (solid curves) and TTTO (dashed curves) with a hydrocarbon binder.

下载 (203KB)
5. Fig. 3. Calculated relationship between the powder force f and the temperature of the powder gases Tc at pressures of 100, 300 and 500 MPa for compositions based on FTDO (solid curves) and TTTO (dashed curves) with an active binder.

下载 (188KB)
6. Fig. 4. Calculated relationship between the powder force f and the temperature of the powder gases Tc at pressures of 100, 300 and 500 MPa for compositions based on FTDO (solid curves) and TTTO (dashed curves) with glycidyl azide polymer.

下载 (203KB)

版权所有 © Russian Academy of Sciences, 2025