Interaction of albumin with angiotensin-I-converting enzyme according to molecular modeling data
- 作者: Belinskaia D.A.1, Goncharov N.V.1
-
隶属关系:
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
- 期: 卷 42, 编号 1 (2025)
- 页面: 20-30
- 栏目: Articles
- URL: https://ruspoj.com/0233-4755/article/view/681133
- DOI: https://doi.org/10.31857/S0233475525010025
- EDN: https://elibrary.ru/uugxfe
- ID: 681133
如何引用文章
详细
Human serum albumin (HSA) is an endogenous inhibitor of angiotensin-I-converting enzyme (ACE), an integral membrane protein that catalyzes the cleavage of angiotensin I decapeptide to angiotensin II octapeptide. By inhibiting ACE, HSA plays a key role in the renin-angiotensin-aldosterone system (RAAS). However, little is known about the mechanism of interaction between these proteins; the structure of the HSA–ACE complex has not yet been obtained experimentally. The purpose of the present work is to investigate the interaction of HSA with ACE in silico. Ten possible HSA–ACE complexes were obtained by the procedure of macromolecular docking. Based on the number of steric and polar contacts between the proteins, the leading complex was selected, the stability of which was then tested by molecular dynamics (MD) simulation. An analysis of the possible effect of modifications in the albumin molecule on its interaction with ACE was performed. A comparative analysis of the structure of the HSA–ACE complex obtained by us, was performed with the known crystal structure of the HSA complex with neonatal Fc receptor (FcRn). The molecular modeling data outline the direction for further study of the mechanisms of HSA–ACE interaction in vitro. Information about these mechanisms will help in the design and improvement of pharmacotherapy aimed at modulating the physiological activity of ACE.
全文:

作者简介
D. Belinskaia
Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
Email: ngoncharov@gmail.com
俄罗斯联邦, St. Petersburg
N. Goncharov
Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: ngoncharov@gmail.com
俄罗斯联邦, St. Petersburg
参考
- Whelton P.K., Carey R.M., Aronow W.S., Casey D.E. Jr., Collins K.J., Dennison Himmelfarb C., DePalma S.M., Gidding S., Jamerson K.A., Jones D.W., MacLaughlin E.J., Muntner P., Ovbiagele B., Smith S.C. Jr., Spencer C.C., Stafford R.S., Taler S.J., Thomas R.J., Williams K.A. Sr., Williamson J.D., Wright J.T. Jr. 2018. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: A report of the American college of cardiology/American heart association task force on clinical practice guidelines. J. Am. Coll. Cardiol. 71 (19), e127–e248. doi: 10.1016/j.jacc.2017.11.006
- Howard G., Downward G., Bowie D. 2001. Human serum albumin induced hypotension in the postoperative phase of cardiac surgery. Anaesth. Intensive Care 29 (6), 591–594. doi: 10.1177/0310057X0102900604
- Oda E. 2014. Decreased serum albumin predicts hypertension in a Japanese health screening population. Intern. Med. 53 (7), 655–660. doi: 10.2169/internalmedicine.53.1894
- Klauser R.J., Robinson C.J., Marinkovic D.V., Erdös E.G. 1979. Inhibition of human peptidyl dipeptidase (angiotensin I converting enzyme: kininase II) by human serum albumin and its fragments. Hypertension 1 (3), 281–286. doi: 10.1161/01.hyp.1.3.281
- Fagyas M., Úri K., Siket I.M., Fülöp G.Á., Csató V., Daragó A., Boczán J., Bányai E., Szentkirályi I.E., Maros T.M., Szerafin T., Édes I., Papp Z., Tóth A. 2014. New perspectives in the renin-angiotensin-aldosterone system (RAAS) II: Albumin suppresses angiotensin converting enzyme (ACE) activity in human. PLoS One 9 (4), e87844. doi: 10.1371/journal.pone.0087844
- Danilov S.M., Jain M.S., Petukhov P.A, Kurilova O.V., Ilinsky V.V., Trakhtman P.E., Dadali E.L., Samokhodskaya L.M., Kamalov A.A., Kost O.A. 2023. Blood ACE phenotyping for personalized medicine: Revelation of patients with conformationally altered ACE. Biomedicines 11 (2), 534. doi: 10.3390/biomedicines11020534
- Kozuch A.J., Petukhov P.A., Fagyas M., Popova I.A., Lindeblad M.O., Bobkov A.P., Kamalov A.A., Toth A., Dudek S.M., Danilov S.M. 2023. Urinary ACE phenotyping as a research and diagnostic tool: Identification of sex-dependent ACE immunoreactivity. Biomedicines 11 (3), 953. doi: 10.3390/biomedicines11030953
- Danilov S.M., Adzhubei I.A., Kozuch A.J., Petukhov P.A., Popova I.A., Choudhury A., Sengupta D., Dudek S.M. 2024. Carriers of heterozygous loss-of-function ACE mutations are at risk for Alzheimer's disease. Biomedicines 12 (1), 162. doi: 10.3390/biomedicines12010162
- Enyedi E.E., Petukhov P.A., Kozuch A.J., Dudek S.M., Toth A., Fagyas M., Danilov S.M. 2024. ACE phenotyping in human blood and tissues: Revelation of ACE outliers and sex differences in ACE sialylation. Biomedicines 1 (5), 940. doi: 10.3390/biomedicines12050940
- Kragh-Hansen U. 1990. Structure and ligand binding properties of human serum albumin. Dan. Med. Bull. 37 (1), 57–84.
- Kragh-Hansen U., Brennan S.O., Minchiotti L., Galliano M. 1994. Modified high-affinity binding of , and to natural mutants of human serum albumin and proalbumin. Biochem. J. 301 (Pt 1), 217–223. doi: 10.1042/bj3010217
- Kragh-Hansen U., Saito S., Nishi K., Anraku M., Otagiri M. 2005. Effect of genetic variation on the thermal stability of human serum albumin. Biochim. Biophys. Acta. 1747 (1), 81–88. doi: 10.1016/j.bbapap.2004.09.025
- Kragh-Hansen U., Minchiotti L., Galliano M., Peters T. Jr. 2013. Human serum albumin isoforms: Genetic and molecular aspects and functional consequences. Biochim. Biophys. Acta. 1830 (12), 5405–5417. doi: 10.1016/j.bbagen.2013.03.026
- Caridi G., Lugani F., Angeletti A., Campagnoli M., Galliano M., Minchiotti L. 2022. Variations in the human serum albumin gene: Molecular and functional dspects. Int. J. Mol. Sci. 23 (3), 1159. doi: 10.3390/ijms23031159
- Hein K.L., Kragh-Hansen U., Morth J.P., Jeppesen M.D., Otzen D., Møller J.V., Nissen P. 2010. Crystallographic analysis reveals a unique lidocaine binding site on human serum albumin. J. Struct. Biol. 171 (3), 353–360. doi: 10.1016/j.jsb.2010.03.014
- Lubbe L., Sewell B.T., Woodward J.D., Sturrock E.D. 2022. Cryo-EM reveals mechanisms of angiotensin I-converting enzyme allostery and dimerization. EMBO J. 41 (16), e110550. doi: 10.15252/embj.2021110550
- Humphrey W., Dalke A., Schulten K. 1996. VMD: Visual molecular dynamics. J. Mol. Graph. 14 (1), 33–38. doi: 10.1016/0263-7855(96)00018-5
- Singh A., Copeland M.M., Kundrotas P.J., Vakser I.A. 2024. GRAMM Web server for protein docking. Methods Mol. Biol. 2714, 101–112. doi: 10.1007/978-1-0716-3441-7_5
- Abraham M.J., Murtola T., Schulz R., Páll S., Smith J.C., Hess B., Lindahl E. 2015. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25. doi: 10.1016/j.softx.2015.06.001
- Foloppe N., MacKerell A.D. Jr. 2000. All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. J. Comput. Chem. 21, 86–104. doi: 10.1002/(SICI)1096-987X(20000130)21:2%3C86::AID-JCC2%3E3.0.CO,2-G
- Jorgensen W.L. 1981. Quantum and statistical mechanical studies of liquids. 10. Transferable intermolecular potential functions for water, alcohols, and ethers. Application to liquid water. J. Am. Chem. Soc. 103, 335–340.
- Bussi G., Zykova-Timan T., Parrinello M. 2009. Isothermal-isobaric molecular dynamics using stochastic velocity rescaling. J. Chem. Phys. 130 (7), 074101. doi: 10.1063/1.3073889
- Parrinello M., Rahman A. 1980. Crystal structure and pair potentials: A molecular-dynamics study. Phys. Rev. Lett. 45, 1196–1199. doi: 10.1103/PhysRevLett.45.1196
- Darden T., York D., Pedersen L. 1993. Particle mesh Ewald: An N∙log(N) method for Ewald sums in large systems. J. Chem. Phys. 3, 10089–10092. doi: 10.1063/1.464397
- Hess B., Bekker H., Berendsen H.J.C., Fraaije J.G.E.M. 1997. LINCS: A linear constraint solver for molecular simulations. J. Comp. Chem. 18, 1463–1473. doi: 10.1002/(SICI)1096-987X(199709)18:12%3C1463::AID-JCC4%3E3.0.CO;2-H
- He X.M., Carter D.C. 1992. Atomic structure and chemistry of human serum albumin. Nature 358, 209–215. doi: 10.1038/358209a0
- Fasano M., Curry S., Terreno E., Galliano M., Fanali G., Narciso P., Notari S., Ascenzi P. 2005. The extraordinary ligand binding properties of human serum albumin. IUBMB Life. 57, 787–796. doi: 10.1080/15216540500404093
- Sudlow G., Birkett D.J., Wade D.N. 1976. Further characterization of specific drug binding sites on human serum albumin. Mol. Pharmacol. 12 (6), 1052–1061.
- Belinskaia D.A., Voronina P.A., Vovk M.A., Shmurak V.I., Batalova A.A., Jenkins R.O., Goncharov N.V. 2021. Esterase activity of serum albumin studied by 1H NMR spectroscopy and molecular modelling. Int. J. Mol. Sci. 22 (19), 10593. doi: 10.3390/ijms221910593
- Nakashima F., Shibata T., Kamiya K., Yoshitake J., Kikuchi R., Matsushita T., Ishii I., Giménez-Bastida J.A., Schneider C., Uchida K. 2018. Structural and functional insights into S-thiolation of human serum albumins. Sci. Rep. 8 (1), 932. doi: 10.1038/s41598-018-19610-9
- Qiu H.Y., Hou N.N., Shi J.F., Liu Y.P., Kan C.X., Han F., Sun X.D. 2021. Comprehensive overview of human serum albumin glycation in diabetes mellitus. World J. Diabetes. 12, 1057–1069. doi: 10.4239/wjd.v12.i7.1057
- Wei L., Alhenc-Gelas F., Corvol P., Clauser E. 1991. The two homologous domains of human angiotensin I-converting enzyme are both catalytically active. J. Biol. Chem. 266 (14), 9002–9008.
- Wei L., Clauser E., Alhenc-Gelas F., Corvol P. 1992. The two homologous domains of human angiotensin I-converting enzyme interact differently with competitive inhibitors. J. Biol. Chem. 267 (19), 13398–13405.
- Jaspard E., Wei L., Alhenc-Gelas F. 1993. Differences in the properties and enzymatic specificities of the two active sites of angiotensin I-converting enzyme (kininase II). Studies with bradykinin and other natural peptides. J. Biol. Chem. 268 (13), 9496–9503.
- Кугаевская Е.В. 2005. Ангиотензин-превращающий фермент. Доменная структура и свойства. Биомед. хим. 51 (6), 567–580.
- Cozier G.E., Lubbe L., Sturrock E.D., Acharya K.R. 2020. ACE-domain selectivity extends beyond direct interacting residues at the active site. Biochem. J. 477 (7), 1241–1259. doi: 10.1042/BCJ20200060
- Tan K.P., Singh K., Hazra A., Madhusudhan M.S. 2020. Peptide bond planarity constrains hydrogen bond geometry and influences secondary structure conformations. Curr. Res. Struct. Biol. 3, 1–8. doi: 10.1016/j.crstbi.2020.11.002
- Li S., Chesnutt D.B. 1985. Intramolecular van der Waals interactions and chemical shifts: A model for β- and γ-effects. Magn. Reson. Chem. 23, 625–638.
- Belinskaia D.A., Voronina P.A., Shmurak V.I., Jenkins R.O., Goncharov N.V. 2021. Serum albumin in health and disease: Esterase, antioxidant, transporting and signaling properties. Int. J. Mol. Sci. 22 (19), 10318. doi: 10.3390/ijms221910318
- Stewart A.J., Blindauer C.A., Berezenko S., Sleep D., Tooth D., Sadler P.J. 2005. Role of Tyr84 in controlling the reactivity of Cys34 of human albumin. FEBS J. 272 (2), 353–362. doi: 10.1111/j.1742-4658.2004.04474.x
- Leblanc Y., Berger M., Seifert A., Bihoreau N., Chevreux G. 2019. Human serum albumin presents isoform variants with altered neonatal Fc receptor interactions. Protein Sci. 28 (11), 1982–1992. doi: 10.1002/pro.3733
- Wagner M.C., Myslinski J., Pratap S., Flores B., Rhodes G., Campos-Bilderback S.B., Sandoval R.M., Kumar S., Patel M., Ashish, Molitoris B.A. 2016. Mechanism of increased clearance of glycated albumin by proximal tubule cells. Am. J. Physiol. Renal Physiol. 310 (10), F1089–1102. doi: 10.1152/ajprenal.00605.2015
- Oganesyan V., Damschroder M.M., Cook K.E., Li Q., Gao C., Wu H., Dall'Acqua W.F. 2014. Structural insights into neonatal Fc receptor-based recycling mechanisms. J. Biol. Chem. 289 (11), 7812–7824. doi: 10.1074/jbc.M113.537563
- Sand K.M., Bern M., Nilsen J., Dalhus B., Gunnarsen K.S., Cameron J., Grevys A., Bunting K., Sandlie I., Andersen J.T. 2014. Interaction with both domain I and III of albumin is required for optimal pH-dependent binding to the neonatal Fc receptor (FcRn). J. Biol. Chem. 289 (50), 34583–34594. doi: 10.1074/jbc.M114.587675
- Ascenzi P., Bocedi A., Notari S., Fanali G., Fesce R., Fasano M. 2006. Allosteric modulation of drug binding to human serum albumin. Mini Rev. Med. Chem. 6, 483–489. doi: 10.2174/138955706776361448
- Ascenzi P., Fasano M. 2010. Allostery in a monomeric protein: The case of human serum albumin. Biophys. Chem. 48, 16–22. doi: 10.1016/j.bpc.2010.03.001
补充文件
