Electrostatic potentials during adsorption and photochemical reactions of pyranine on bilayer lipid membranes

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Adsorption and photochemical reactions of pyranine on a bilayer lipid membrane (BLM) have been studied by measuring electrostatic potentials at the membrane–water interface. The dependence of the electrostatic potentials due to the adsorption of pyranine on its concentration in solution is described by the Gouy–Chapman theory assuming that anions with three charged groups are adsorbed on the membrane. No significant changes in the boundary potential were found when BLM with pyranine adsorbed on it was illuminated. Significant changes in the potential were observed if molecules of styryl dyes di-4-ANEPPS or RH-421 were adsorbed on BLM in addition to pyranine. The sign and magnitude of these changes correspond to the disappearance of the dipole potential created by styryl dye molecules on the BLM. The rate of potential disappearance was proportional to pyranine concentration and illumination intensity. The disappearance of the potential can be caused either by the binding of protons released from the pyranine molecule to the dye molecules with their subsequent desorption from the BLM or by their destruction. Pyranine and styryl dye molecules can form complexes at the BLM boundary. This is evidenced by experiments in which the sum of the potential changes caused by their adsorption separately differed significantly from the change in the boundary potential during their simultaneous adsorption. The kinetics of the disappearance of the dipole potential of BLM with styryl dyes upon excitation of pyranine turned out to be similar to that observed earlier with another compound, 2-methoxy-5-nitrophenyl sodium sulfate, which releases protons at the membrane boundary upon illumination (Konstantinova et al., 2021. Biochem. (Mosc.), Suppl. Series A: Membr. Cell Biol. 15 (2), 142–146). This suggests that it is associated with the desorption of dye molecules from the membrane, due to the binding of protons released from excited pyranin molecules to them.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Sokolov

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: sokolov.valerij@gmail.com
Ресей, Moscow, 119071

V. Tashkin

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: sokolov.valerij@gmail.com
Ресей, Moscow, 119071

D. Zykova

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Email: sokolov.valerij@gmail.com
Ресей, Moscow, 119071; Dolgoprudny, Moscow oblast, 141700

L. Pozdeeva

Lomonosov Moscow State University

Email: sokolov.valerij@gmail.com
Ресей, Moscow, 119991

Әдебиет тізімі

  1. Ташкин В.Ю., Вишнякова В.Е., Щербаков А.А., Финогенова О.А., Ермаков Ю.А., Соколов В.С. 2019. Изменение емкости и граничного потенциала бислойной липидной мембраны при быстром освобождении протонов на ее поверхности . Биол. мембраны. 36 (2), 101–108. doi: 10.1134/S0233475519020075
  2. Sokolov V.S., Tashkin V.Yu., Zykova D.F., Kharitonova Yu.V., Galimzyanov T.R., Batishchev O.V. 2023. Electrostatic Potentials Caused by the Release of Protons from Photoactivated Compound Sodium 2-Methoxy-5-nitrophenyl Sulfate at the Surface of Bilayer Lipid Membrane. Membranes. 13, 722. doi: 10.3390/membranes13080722
  3. Geissler D., Antonenko Y.N., Schmidt R., Keller S., Krylova O.O., Wiesner B., Bendig J., Pohl P., Hagen V. 2005. (Coumarin-4-yl)methyl esters as highly efficient, ultrafast phototriggers for protons and their application to acidifying membrane surfaces. Angew.Chem.Int.Ed Engl. 44(8), 1195–1198. doi: 10.1002/anie.200461567
  4. Abbruzzetti S., Sottini S., Viappiani C., Corrie J.E. 2006. Acid-induced unfolding of myoglobin triggered by a laser pH jump method. Photochem.Photobiol.Sci. 5(6), 621–628. doi: 10.1039/b516533d
  5. Fibich A., Apell H.J. 2011. Kinetics of luminal proton binding to the SR Ca-ATPase. Biophys.J. 101(8), 1896–1904. doi: 10.1016/j.bpj.2011.09.014
  6. Ташкин В.Ю., Щербаков А.А., Апель Х.-Ю., Соколов В.С. 2013. Конкурентный транспорт ионов натрия и протонов в цитоплазматическом канале Na + , K + -ATP-азы. Биол. мембраны. 30 (2), 105–114.
  7. Serowy S., Saparov S.M., Antonenko Y.N., Kozlovsky W., Hagen V., Pohl P. 2003. Structural proton diffusion along lipid bilayers. Biophys.J. 84 (2 Pt 1), 1031–1037. doi: 10.1016/S0006-3495(03)74919-4
  8. Springer A., Hagen V., Cherepanov D.A., Antonenko Y.N., Pohl P. 2011. Protons migrate along interfacial water without significant contributions from jumps between ionizable groups on the membrane surface. Proc.Natl.Acad.Sci.U.S.A. 108 (35), 14461–14466. doi: 10.1073/pnas.1107476108
  9. Weichselbaum E., Osterbauer M., Knyazev D.G., Batishchev O.V., Akimov S.A., Hai N.T., Zhang C., Knor G., Agmon N., Carloni P., Pohl P. 2017. Origin of proton affinity to membrane/water interfaces. Sci.Rep. 7, 4553. doi: 10.1038/s41598-017-04675-9
  10. Weichselbaum E., Galimzyanov T., Batishchev O.V., Akimov S.A., Pohl P. 2023. Proton Migration on Top of Charged Membranes. Biomolecules. 13 (2), 352. doi: 10.3390/biom13020352
  11. Zhang C., Knyazev D.G., Vereshaga Y.A., Ippoliti E., Nguyen T.H., Carloni P., Pohl P. 2012. Water at hydrophobic interfaces delays proton surface-to-bulk transfer and provides a pathway for lateral proton diffusion. Proc.Natl.Acad.Sci.USA. 109(25), 9744–9749. doi: 10.1073/pnas.1121227109
  12. Heberle J., Riesle J., Thiedemann G., Oesterhelt D., Dencher N.A. 1994. Proton migration along the membrane surface and retarded surface to bulk transfer. Nature. 370 (6488), 379–382. doi: 10.1038/370379a0
  13. Malkov D.Y., Sokolov V.S. 1996. Fluorescent styryl dyes of the RH series affect a potential drop on the membrane/solution boundary. Biochem.Biophys.Acta. 1278, 197–204. doi: 10.1016/0005-2736(95)00197-2
  14. Gross D., Loew L.M. 1989. Fluorescent indicators of membrane potential: microspectrofluorometry and imaging. Methods Cell Biol. 30, 193–218. doi: 10.1016/S0091-679X(08)60980-2
  15. Clarke R.J., Kane D.J. 1997. Optical detection of membrane dipole potential: avoidance of fluidity and dye-induced effects. Biochim.Biophys.Acta. 1323 (2), 223–239. doi: 10.1016/s0005-2736(96)00188-5
  16. Sokolov V.S., Gavrilchik A.N., Kulagina A.O., Meshkov I.N., Pohl P., Gorbunova Y.G. 2016. Voltage-sensitive styryl dyes as singlet oxygen targets on the surface of bilayer lipid membrane. J. Photochem. Photobiol.B. 161, 162–169. doi: 10.1016/j.jphotobiol.2016.05.016
  17. Константинова А.Н., Харитонова Ю.В., Ташкин В.Ю., Соколов В.С. 2021. Стириловые красители di-4-ANEPPS и RH-421 как датчики протонов на поверхности липидных мембран. Биол. мембраны. 38 (2), 123–128. doi: 10.31857/S0233475521020079
  18. Gutman M. 1986. Application of the laser-induced proton pulse for measuring the protonation rate constants of specific sites on proteins and membranes. Methods Enzymol. 127, 522–538. doi: 10.1016/0076-6879(86)27042-1
  19. Gutman M. 1984. The pH jump: probing of macromolecules and solutions by a laser-induced, ultrashort proton pulse--theory and applications in biochemistry. Methods Biochem.Anal. 30, 1–103. doi: 10.1002/9780470110515.ch1
  20. Nandi R., Amdursky N.A. 2022. The dual use of the pyranine (HPTS) fluorescent probe: A ground-state pH indicator and an excited-state proton transfer probe. Acc.Chem.Res. 55, 2728–2739. doi: 10.1021/acs.accounts.2c00458
  21. Gutman M., Nachliel E., Gershon E., Giniger R. 1983. Kinetic analysis of the protonation of a surface group of a macromolecule. Eur.J.Biochem. 134 (1), 63–69. doi: 10.1111/j.1432-1033.1983.tb07531.x
  22. Mueller P., Rudin D.O., Tien H.T., Wescott W.C. 1963. Methods for the formation of single bimolecular lipid membranes in aqueous solution. J.Phys.Chem. 67, 534–535.
  23. Ermakov Yu.A., Sokolov V.S. 2003. Planar Lipid Bilayers (BLMs) and their applications.Ed. Tien H.T., Ottova-Leitmannova A. Amsterdam etc: Elsevier, p. 109–141.
  24. Sokolov V.S., Mirsky V.M. 2004. Ultrathin electrochemical chemo- and biosensors: Technology and performance. Ed. Mirsky V.M. Heidelberg: Springer-Verlag, P. 255–291.
  25. McLaughlin, S. 1977. Electrostatic potentials at membrane-solution interfaces. In: Current topics in membranes and transport. Eds. Bronner F., Kleinzeller A. New York, San Francosco, London: Acad. Press. V. 9, p. 71–144. https://doi.org/10.1016/S0070-2161(08)60677-2.
  26. Gutman M., Nachliel E., Bamberg E., Christensen B. 1987. Time-resolved protonation dynamics of a black lipid membrane monitored by capacitative currents. Biochim.Biophys. Acta. 905 (2), 390–398.
  27. Agmon N., Bakker H.J., Campen R.K., Henchman R.H., Pohl P., Roke S., Thamer M., Hassanali A. 2016. Protons and hydroxide ions in aqueous systems. Chem.Rev. 116 (13), 7642–7672. doi: 10.1021/acs.chemrev.5b00736
  28. Knyazev D.G., Silverstein T.P., Brescia S., Maznichenko A., Pohl P. 2023. A new theory about interfacial proton diffusion revisited: the commonly accepted laws of electrostatics and diffusion prevail. Biomolecules. 13 (11), 1641. doi: 10.3390/biom13111641

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Dependence of the difference in the boundary potentials of the BLM ∆φb on the concentration of pyranine C in the solution on one side of the membrane. The BLM was formed in a solution of 20 mM KCl, 2 mM Tris, HEPES and citrate, pH 6.0. The straight line is drawn according to equation (1) at z = 3.

Жүктеу (33KB)
3. Fig. 2. Kinetics of changes in the boundary potential difference of the BLM upon addition of di-4-ANEPPS at a concentration of 6 μM (a) or RH-421 at a concentration of 7.5 μM (b) and pyranine at a concentration of 100 μM to the solution on one side of the membrane, as well as upon subsequent switching on (L) and switching off of the light (D). The BLM was formed in a solution of 20 mM KCl, 0.2 mM Tris, HEPES and citrate, pH 7. The moments of addition of di-4-ANEPPS, RH-421 and pyranine, as well as switching on and off of the light are shown by arrows.

Жүктеу (101KB)
4. Fig. 3. Dependence of the rate of decrease of the dipole potential caused by the adsorption of di-4-ANEPPS on the concentration of pyranine C (a, illumination power 0.4 W), and on the illumination power P (b, pyranine concentration 10 μM). BLM was formed in a solution of 20 mM KCl, 0.2 mM Tris, HEPES and citrate, pH 7.0.

Жүктеу (75KB)
5. Fig. 4. Dependence of the change in the boundary potential of BLM caused by the adsorption of pyranine on its concentration in a solution in which 5 μM di-4-ANEPPS is also present (white circles) and in the absence of di-4-ANEPPS (black circles). BLM was formed in a solution of 20 mM KCl, 2 mM Tris, HEPES and citrate, pH 7.0.

Жүктеу (37KB)
6. Fig. 5. Dependence of the rate of potential disappearance upon illumination on the concentration of HEPES in the solution. BLM was formed in a solution of 20 mM KCl, 0.2 mM Tris, HEPES and citrate, pH 7.0. The concentration of pyranine was 10 μM, the illumination power was 0.2 W.

Жүктеу (36KB)

© The Russian Academy of Sciences, 2025