Structure and thermal properties of the glass-forming system Na2O – Al2O3 – P2O5

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Phosphate glasses can be used as immobilization matrices for radioactive waste. To choose the most suitable compositions for this purpose, it is important to observe data on both the glass structure and physicochemical properties. In the present work, the classical molecular dynamics method was used to evaluate a number of physicochemical properties of Na2O – Al2O3 – P2O5 glass with a mass fractions 0.25 – 0.25 – 0.5, respectively, which is considering as a base glass for complex immobilization matrices. The model system was smoothly cooled from the melt at T = 2300 K down to room temperature. During cooling, the temperature dependences of the density and heat capacity were obtained. According to the calculation, the specific heat capacity of the glass at room temperature is 1.17 J/(g*K). The calculated the radial distribution functions and time dependences of the mean squared ion displacements show that the ensemble at room temperature is in a glassy state. A detailed analysis of the local structure, including the statistics of local environments [MeOn], was carried out. The glass is shown to contain [PO4] tetrahedra combined with [AlO5] and [AlO6], as well as various sodium groupings. The maxima of the radial distribution functions of P-O, Al-O and Na-O lie at 1.50, 2.02 and 2.45 Å, respectively, which is in good agreement with the reference data on the structure of glasses with similar compositions. In addition, the density of 2.526 g/cm3 calculated for room temperature is within the range of typical densities of phosphate glasses and matches the experimentally measured value. For the room-temperature glass, the vibrational densities of states are calculated. The characteristic vibrational frequencies of aluminum and phosphorus are in the regions of 450 cm-1 and 1300 cm-1, respectively, which agree with the experimental Raman spectra semi-quantitatively. To calculate thermal conductivity, nonequilibrium molecular dynamics was used, where the heat flux was simulated in the cell and the temperature gradient was recording. The calculated thermal conductivity and thermal diffusivity are equal to 1.35 W/(m*K) and 4.57*10–7 m2/s, respectively.

Full Text

Restricted Access

About the authors

D. O. Zakiryanov

The Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: dmitryz.ihte@gmail.com
Russian Federation, Ekaterinburg

M. I. Vlasov

The Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences

Email: dmitryz.ihte@gmail.com
Russian Federation, Ekaterinburg

References

  1. Sengupta P. // J. Hazard. Mater. 2012. 235-236. P. 17–28. https://doi.org/10.1016/j.jhazmat.2012.07.039
  2. Oelkers E.H., Montel J.-M. // Elements. 2008. 4(2). P. 113–116. https://doi.org/10.2113/gselements.4.2.113
  3. Musatov N.D., Kashcheev V.A., Tuchkova A.I. i dr. // Vopr. atom. nauki i tekh. 2020. № 1 (102). P. 66–75.
  4. Vlasov M.I., Vedernikova E.D., Pershina S.V. i dr. // Steklo i keramika. 2025. 98(1), P. 03–16.
  5. Brow R.K. // J. Non-Cryst. Solids. 2000. 263-264. P. 1–28. https://doi.org/10.1016/s0022-3093(99)00620-1
  6. Zielniok D., Cramer C., Eckert H. // Chem. Mater. 2007. 19. P. 3162–3170. https://doi.org/10.1021/cm0628092
  7. Balyakin I.A., Vlasov M.I., Pershina S.V., Tsymbarenko D.M., Rempel A.A. // Comput. Mater. Sci. 2024. 239. P. 112979. https://doi.org/10.1016/j.commatsci.2024.112979
  8. Muñoz F., Rocherullé J., Ahmed I., Hu L. Springer Handbook of Glass. Springer. 2019. P. 553–594
  9. Muñoz F., Montagne L., Pascual L., Durán A. // J. Non-Cryst. Solids. 2009. 355. P. 2571–2577. https://doi.org/10.1016/j.jnoncrysol.2009.09.013.
  10. Grest G.S., Cohen M.H. // Phys. Rev. B. 1980. 21. P. 4113–4117. https://doi.org/10.1103/physrevb.21.4113
  11. Hoppe U., Walter G., Kranold R., Stachel D. // J. Non-Cryst. Solids. 2000. 263-264. P. 29–47. https://doi.org/10.1016/s0022-3093(99)00621-3
  12. Liu H., Zhao Z., Zhou Q. et al. // C. r., Géosci. 2022. 354(S1). P. 35–77. https://doi.org/10.5802/crgeos.116
  13. Jahn S. // Rev. Mineral. Geochem. 2022. 87(1). P. 193–227. https://doi.org/10.2138/rmg.2022.87.05
  14. Pedone A // J. Phys. Chem. C. 2009. 113(49). P. 20773–20784. https://doi.org/10.1021/jp9071263
  15. Buckingham R.A. // Proc. R. Soc. Lond. 1938. 168(933). P. 264–283. https://doi.org/10.1098/rspa.1938.0173
  16. Al-Hasni B., Mountjoy G. // J. Non-Cryst. Solids. 2010. 357(15). P. 2775–2779. https://doi.org/10.1016/j.jnoncrysol.2010.10.010
  17. Du J., Cormack A.N. // J. Non-Cryst. Solids. 2004. 349. P. 66–79. https://doi.org/10.1016/j.jnoncrysol.2004.08.264
  18. Lv X., Xu Z., Li J., Chen J., Liu Q. // J. Mol. Liq. 2016. 221. P. 26–32. https://doi.org/10.1016/j.molliq.2016.05.064
  19. Zakiryanov D., Kobelev M., Tkachev N. // Fluid Ph. Equilib. 2019. 506. P. 112369. https://doi.org/10.1016/j.fluid.2019.112369
  20. Thompson A.P., Aktulga H.M., Berger R. et al. // Comput. Phys. Commun. 2021. 271. P. 108171. https://doi.org/10.1016/j.cpc.2021.108171
  21. Thomas M., Brehm M., Fligg R., Vöhringer P., Kirchner B. // Phys. Chem. Chem. Phys. 2013. 15(18). P. 6608. https://doi.org/10.1039/c3cp44302g
  22. Chanshetti U.B., Shelke V.A., Jadhav S.M. et al. // FU Phys Chem Technol. 2011. 9(1). P. 29–36. https://doi.org/10.2298/fupct1101029c
  23. Brow R.K. // J. Am. Ceram. Soc. 1993. 76(4). P. 919-928. https://doi.org/10.1111/j.1151-2916.1993.tb05315.x
  24. Alhasni B. // J. Non-Cryst. Solids. 2021. 578. P. 121338. https://doi.org/10.1016/j.jnoncrysol.2021.121338
  25. Shvanskaya L.V., Yakubovich O.V., Belik V.I. // Crystallogr. Rep. 2016. 61. P. 786–795. https://doi.org/10.1134/s1063774516050205
  26. Hoppe U. // J. Non-Cryst. Solids. 1996. 195. P. 138–147. https://doi.org/10.1016/0022-3093(95)00524-2
  27. Schneider J., Oliveira S.L., Nunes L.A.O., Panepucci H. // J. Am. Ceram. Soc. 2003. 86. P. 317–324. https://doi.org/10.1111/j.1151-2916.2003.tb00017.x
  28. Yadav A.K., Singh P. // RSC Advances. 2015. 5(83). P. 67583–67609. https://doi.org/10.1039/c5ra13043c
  29. Li W., He D., Li S., Chen W., Hu L. // Ceram. Int. 2014. 40(8). P. 13389–13393. https://doi.org/10.1016/j.ceramint.2014.05.056
  30. Hudgens J.J., Brow R.K., Tallant, Martin S.W. // J. Non-Cryst. Solids. 1998. 223(1-2). P. 21–31. https://doi.org/10.1016/s0022-3093(97)00347-5
  31. Boucher S., Piwowarczyk J., Marzke R.F. et al. // J. Europ. Ceram. Soc. 2005. 25. P. 1333–1340. https://doi.org/10.1016/j.jeurceramsoc.2005.01.016
  32. Goj P., Handke B., Stoch P. // Sci. Rep. 2022. 12. P. 17495. https://doi.org/10.1038/s41598-022-22432-5
  33. Freitas A.M., Bell M.J.V., Anjos V. et al. J. Lumin. 2015. 169. P. 353–358. https://doi.org/10.1016/j.jlumin.2015.08.062

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. (a) Dependence of the Na-Na pair energy on the interionic distance. Data calculated by quantum chemistry and fitting by the Buckingham potential are shown. The total charge of the system is +1. (b) Dependence of the exponential repulsion of the Na-Na pair on the distance between these ions. Dependences for the total charge of +1 and +2 are shown. (c) The Na-Na radial distribution function obtained later for glass.

Download (77KB)
3. Fig. 2. Dependence of the coordination numbers of cation-oxygen pairs on temperature during cooling of the ensemble.

Download (91KB)
4. Fig. 3. Temperature dependences of the calculated values ​​of enthalpy (a), heat capacity (b) and density (c) for glass of the composition Na2O –Al2O3 – P2O5 with a mass fraction of components of 0.25 – 0.25 – 0.5.

Download (98KB)
5. Fig. 4. Radial distribution functions at T = 300 K for pairs of “cation-anion” atoms for glass of the composition Na2O – Al2O3 – P2O5 with a mass fraction of components of 0.25 – 0.25 – 0.5.

Download (72KB)
6. Fig. 5. Dependence of the root mean square displacement (RMS) of ions on temperature and ion type during 500 ps of simulation.

Download (109KB)
7. Fig. 6. Densities of vibrational states: (a) phosphorus and oxygen, (b) aluminum and oxygen, (c) sodium and oxygen at T = 300 K for glass of the composition Na2O – Al2O3 – P2O5 with a mass fraction of components of 0.25 – 0.25 – 0.5.

Download (92KB)
8. Fig. 7. Dependence of the temperature difference of the heating and cooling regions on the simulation time. The dotted line shows the average value of ΔT and the averaging interval.

Download (72KB)

Copyright (c) 2025 Russian Academy of Sciences