Evaporation of LiCl–KCl–LaCl3–CeCl3–NdCl3–UCl3 molten mixtures components at reduced pressures
- 作者: Salyulev A.B.1, Mullabaev A.R.1, Nikolaev A.Y.1, Kovrov V.A.1, Zaikov Y.P.1, Mochalov Y.S.2
-
隶属关系:
- Institute of High-Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences
- Joint Stock Company “Proryv”
- 期: 编号 3 (2025)
- 页面: 218-236
- 栏目: Articles
- URL: https://ruspoj.com/0235-0106/article/view/686295
- DOI: https://doi.org/10.31857/S0235010625030047
- ID: 686295
如何引用文章
详细
The present paper provides a brief review of the available data on the saturated vapor pressure and relative volatility of various individual chlorides (LiCl, KCl, NdCl3, CeCl3, LaCl3, UCl3) being present in the processes of pyrochemical reprocessing of spent nuclear fuel (SNF). It is shown that alkali metal chlorides are the most volatile. The volatility of rare earth metal and uranium trichlorides in the temperature range of 500–1000°C is 2–5 orders of magnitude lower. High-temperature vacuum distillation of components of molten chloride electrolytes based on the LiCl–KCl eutectic, placed in nickel boats containing uranium and rare earth metal trichlorides, was carried out under various conditions: temperature range 700–1000°C, exposure time 0.4–4 h, vacuum degree 2·10-3–2 Pa, UCl3 and REE trichlorides concentrations 0.25–1.7 mol. % and 0.13–0.7 mol. % (in total), respectively. The redistribution of salt components between the melt and vapor condensates was determined. It follows from the experimental data obtained in this study that alkali metal chlorides (LiCl, KCl) and REE chlorides (NdCl3, CeCl3, LaCl3) can be fairly quickly (in 2–4 h) and completely distilled from a multicomponent salt electrolyte at the temperatures up to 850–900°С; their concentrations in the electrolyte by the end of distillation decrease by 2.5–4 orders of magnitude (for more volatile alkali chlorides – to a greater extent). Under the same conditions, the content of uranium compounds (in the form of UCl3) can be reduced by no more than an order of magnitude, apparently due to incongruent (occurring with decomposition) evaporation of trichloride. Increasing the temperature above 900°С has little effect on the completeness of distillation for all components of molten mixtures. Conclusions have been made about the relative volatility of the components of molten salt mixtures (chlorides of alkali metals, REE and uranium). Optimal distillation modes have been selected. The dependences found may be useful for developing promising SNF processing schemes using salt distillation.
关键词
全文:

作者简介
A. Salyulev
Institute of High-Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: salyulev@ihte.ru
俄罗斯联邦, Yekaterinburg
A. Mullabaev
Institute of High-Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences
Email: salyulev@ihte.ru
俄罗斯联邦, Yekaterinburg
A. Nikolaev
Institute of High-Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences
Email: salyulev@ihte.ru
俄罗斯联邦, Yekaterinburg
V. Kovrov
Institute of High-Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences
Email: salyulev@ihte.ru
俄罗斯联邦, Yekaterinburg
Yu. Zaikov
Institute of High-Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences
Email: salyulev@ihte.ru
俄罗斯联邦, Yekaterinburg
Yu. Mochalov
Joint Stock Company “Proryv”
Email: salyulev@ihte.ru
俄罗斯联邦, Moscow
参考
- Park S.B., Cho D.W., Oh G.H., Lee J.H., Lee J.H., Hwang S.C., Kang Y.H., Lee H., Kim E.H., Park S.-W. Salt evaporation behaviors of uranium deposits from an electrorefiner // J. Radioanal. Nucl. Chem. 2010. 283. P. 171–176.
- Jang J., Kim T., Park S., Kim G.-Y., Kim S., Lee S. Evaporation behavior of lithium, potassium, uranium and rare earth chlorides in pyroprocessing // J. Nucl. Mater. 2017. 497. P. 30–36.
- Zaikov Yu.P., Shishkin V.Yu., Potapov A.M., Dedyukhin A.E., Kovrov V.A., Kholkina A.S., Volkovich V.A., Polovov I.B. Research and development of pyrochemical processing for the mixed nitride uranium-plutonium fuel // IOP Conf. Series: J. Physics. 2020. 1475. P. 012027.
- Westphal B.R., Marsden K.C., Price J.C., Laug D.V. On the development of a distillation process for electrometallurgical treatment of irradiated spent nuclear fuel // Nucl. Eng. and Technol. 2008. 40. № 3. P. 163–174.
- Yang H.-C., Eun H.-C., Kim I.-T. Study on the distillation rates of LiCl–KCl eutectic salt under different vacuum conditions // Vacuum. 2010. 84. P. 751–755.
- Eun H.-C., Yang H.-C., Cho Y.-J., Park H.-S., Kim E.-H., Kim I.-T. Separation of pure LiCl–KCl eutectic salt from a mixture of LiCl–KCl eutectic salt and rare-earth precipitates by vacuum distillation // J. Nucl. Soc. and Technol. 2007. 44. P. 1295–1300.
- Park H.P. Residual liquid behavior calculation for vacuum distillation of multi-component chloride system // J. Nucl. Fuel Cycle and Waste Technol. 2014. 12. P. 179–189.
- Park B.H., Oh S.-C., Hur J.-M. Measurement of LiCl removal behavior from porous solids by vacuum evaporation // Vacuum. 2014. 109. P. 61–67.
- Geng J., Luo Y., Fu H., Dou Q., He H., Ye G., Li Q. Temperature and pressure effect on evaporation behavior of chloride salts using low pressure distillation // Progress in Nucl. Energy. 2022. 147. P. 104212 (1–8).
- Salyulev A.B., Shishkin A.V., Shishkin V.Yu., Zaikov Yu.P. Distillation of lithium chloride from the products of uranium dioxide metalization // Atomic Energy. 2019. 126. № 4. P. 226–229.
- Salyulev A.B., Moskalenko N.I., Shishkin V.Yu., Zaikov Yu.P. Selective evaporation of the components of molten mixtures at low pressures // Russ. Metallurgy (Metally). 2021. 2021. № 2. P. 151–158.
- Salyulev A.B., Mullabaev A.R., Shishkin A.V., Kovrov V.A., Zaikov Yu.P., Mochalov Yu.S. Selective evaporation of components of molten mixtures under reduced pressure // Russ. Metallurgy (Metally). 2024. 2024. № 4. P. 774–782.
- Nikolaev A.Yu., Mullabaev A.R., Suzdaltsev A.V., Kovrov V.A., Kholkina A.S., Shishkin V.Yu., Zaikov Yu.P. Purification of alkali-metal chlorides by zone recrystallization for use in pyrochemical processing of spent nuclear fuel // Atomic Energy. 2022. 131. № 8. P. 195–201.
- Laptev D.M. Fiziko-khimicheskiye svoystva khloridov lantanoidov i ikh vzaimodeystviye v sistemakh [Physicochemical properties of lanthanide chlorides and their interaction in systems] // Dis. … dokt. khim. nauk. Novokuznetsk, 1996. 394 p. [In Russian].
- Revzin G.E. Bezvodnyye khloridy redkozemel’nykh elementov i skandiya [Anhydrous chlorides of rare earth elements and scandium] // Metody polucheniya khimicheskikh reaktivov i preparatov. M.: IREA, 1967. Issue 16. P. 124–129. [In Russian].
- Kochedykov V.A., Khokhlov V.A. Refractive indices and molar refractivities of molten rare-earth trichlorides and their mixtures with alkali chlorides // J. Chem. Eng. Data. 2017. 62. № 1. P. 44–51.
- Roine A. HSC Chemistry 7.1 Thermochemical Database. Finland: Outokumpu Research Oy. 2014.
- Mironov V.L., Burylev B.P. Davleniye nasyshchennogo para individualnykh khloridov i ikh binarnykh smesey [Saturated vapor pressure of individual chlorides and their binary mixtures] // “Uspekhi termodinamiki rasplavov”: materialy Vsesoyuznogo seminara. Krasnodar: Krasnodar. politekhn. in-t, 1976. P. 25–84. [In Russian].
- Novikov G.I., Gavryuchenkov F.G. Kompleksnye galogenidy v parakh pri vysokikh temperaturakh [Complex halides in vapors at high temperatures] // Uspekhi khimii. 1967. 36. № 3. P. 399–413. [In Russian].
- Salyulev A.B., Kudyakov V.Ya. Saturated vapor composition and volatility of uranium and some other metal tetrachlo-rides (, , , ) from their molten mixtures with alkali metal chlorides // Russ. Metallurgy (Metally). 2023. 2023. № 8. P. 986–992.
- Suvorov A.V. Termodinamicheskaya khimiya paroobraznogo sostoyaniya [Thermodynamic chemistry of the vapor state]. L.: Khimiya. 1970. [In Russian].
- Shugurov S.M. Termicheskaya ustoychivost’ neorganicheskikh assotsiatov v gazovoy faze [Thermal stability of inorganic associates in the gas phase] // Dis. … dokt. khim. nauk. Sankt-Peterburg, 2018. [In Russian].
- Schäfer H. Gaseous chloride complexes with halogen bridges – homo-complexes and hetero-complexes // Angewandte Chemie, Intern. Edition. 1976. 15. № 12. P. 713–727.
- Yarym-Agayev N.L. Termodinamicheskiye svoystva i stroyeniye para nad rasplavlennymi solyami i ikh smesyami [Thermodynamic properties and structure of steam over molten salts and their mixtures] // Ionnyye rasplavy. Kiyev: Naukova dumka. 1974. № 1. P. 42–61. [In Russian].
- Novikov G.I., Baev A.K. K voprosu o letuchesti atsidokompleksnykh soedineniy v sistemakh [On the volatility of acid-complex compounds in systems] // Zh. neorg. khimii. 1964. 9. № 7. P. 1669–1675. [In Russian].
- Murase K., Adachi G., Hashimoto M., Kudo H. Mass spectrometric investigation of the vapor over the equimolar melt (Ln = Nd, Er) at high temperatures // Bull. Chem. Soc. Jpn. 1996. 69. P. 353–357.
- Fukasawa K., Uehara A., Nagai T., Sato N., Fujii T., Yamana H. Thermodynamic properties of trivalent lanthanide and actinide ions in molten mixtures of LiCl and KCl. // J. Nucl. Mater. 2012. 424. P. 17–22.
- Park S.B., Cho D.W., Woo M.S., Hwang S.C., Kang Y.H., Kim J.G., Lee H. Investigation of the evaporation of rare earth chlorides in a LiCl–KCl molten salt // J. Radioanal. Nucl. Chem. 2011. 287. P. 603–608.
- Kwon S.W., Park S.W., Lee S.J. Effect of deposit on the evaporation rate of adhered salt in uranium dendrite // Science Technol. Nucl. Install. 2020. 2020. Article ID 8866234. 6 p.
- Shchukarev S.A., Vasil’kova I.V., Efimov A.I. O disproportsionirovanii trikhlorida urana [On the disproportionation of uranium trichloride] // Zh. neorg. khimii. 1956. 1. № 12. P. 2652–2656. [In Russian].
- Kovács A., Booij A.S., Cordfunke E.H.P., Kok-Scheele A., Konings R.J.M. On the fusion and vaporization behavior of // J. Alloys and Compounds. 1996. 241. P. 95–97.
- Choi S., Bae S.-E., Park T.-H. Electrochemical and spectroscopic monitoring of interactions of oxide ion with U (III) and Ln (III) (Ln = Nd, Ce, and La) in LiCl–KCl melts // J. Electrochem Soc. 2017. 164. P. H5068–H5073.
- Jeon M.K., Yoo T.-S., Choi E.-Y., Hur J.-M. Quantitative calculations on the reoxidation behavior of oxide reduction system for pyroprocessing // J. Radioanal. Nucl. Chem. 2017. 313. P. 155–159.
补充文件
