Corrosion of 10CrNi45Al alloy in an oxidizing gas atmosphere
- Authors: Karfidov E.A.1, Seliverstov K.E.1, Filippov I.D.1, Nikitina E.V.1, Dedyukhin A.E.1, Zaykov Y.P.1
-
Affiliations:
- Institute of High-Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences
- Issue: No 3 (2025)
- Pages: 237-249
- Section: Articles
- URL: https://ruspoj.com/0235-0106/article/view/686301
- DOI: https://doi.org/10.31857/S0235010625030052
- ID: 686301
Cite item
Abstract
One of the basic technological operations of the currently developed pyrochemical technology for reprocessing spent nitride nuclear fuel from fast neutron reactors (SNF RBN) is high-temperature treatment (HTT) in a gas environment. The aim of the work was to study the effect of oxygen-containing gas environments: a dry mixture of Ar-20 vol. % O2 and a mixture of Ar-20 vol. % O2, with 60% humidity for the degradation of 10CrNi45Al alloy, a candidate material for the manufacture of the HTT apparatus. Corrosion tests lasting up to 1000 hours were carried out at 500°C. It was established by the X-ray diffraction method that the main corrosion products formed on the surface of samples kept in a dry gas atmosphere are Al2O3, Fe2O3 and NiFe2O4. The presence of moisture in the gas environment contributes to the formation of NiO and NiСrO4. In a dry gas mixture, an outer layer is observed on the surface of the sample, which is individual fragments of corrosion products: oxide compounds of iron, chromium, nickel. The surface of the material is covered with a continuous film with a thickness of 2 to 5 μm based on aluminum oxide. For samples tested in a wet gas mixture, a violation of the continuity of the internal protective layer was revealed. The outer loosened layer consists of iron oxides, under which a layer with a predominant content of oxygen-containing chromium compounds was revealed.
Full Text

About the authors
E. A. Karfidov
Institute of High-Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences
Email: dedyukhin@ihte.ru
Russian Federation, Yekaterinburg
K. E. Seliverstov
Institute of High-Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences
Email: dedyukhin@ihte.ru
Russian Federation, Yekaterinburg
I. D. Filippov
Institute of High-Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences
Email: dedyukhin@ihte.ru
Russian Federation, Yekaterinburg
E. V. Nikitina
Institute of High-Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences
Email: dedyukhin@ihte.ru
Russian Federation, Yekaterinburg
A. E. Dedyukhin
Institute of High-Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences
Author for correspondence.
Email: dedyukhin@ihte.ru
Russian Federation, Yekaterinburg
Yu. P. Zaykov
Institute of High-Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences
Email: dedyukhin@ihte.ru
Russian Federation, Yekaterinburg
References
- Potapov A.M., Mazannikov M.V., Zaikov Yu.P. Pervyye stadii pererabotki nitridnogo otrabotavshego yadernogo topliva [The first stages of processing nitride spent fuel] // Physical chemistry and electrochemistry of molten and organic electrolytes: collection of materials of the XIX Russian conference. Ekaterinburg: Publishing House “Azhur”. 2023. P. 123–126. [In Russian]
- Karfidov E.A., Nikitina E.V., Mazannikov M.V., Potapov A.M., Dedyukhin A.E. Korroziya stali EP-823 (16KH12MVSFBR) v usloviyakh vysokotemperaturnoy obrabotki OYAT [Corrosion of EP-823 steel (16Kh12MVSFBR) under conditions of high-temperature processing of spent nuclear fuel] // Rasplavy (Melts). 2024. № 6. P. 581–595. [In Russian]
- Semenova I.V., Florianovich G.M., Khoroshilov A.V. Korroziya i zashchita ot korrozii [Corrosion and corrosion protection]. M.: Fizmatlit. 2002. [In Russian]
- Sokol I.Ya., Ulyanin E.A., Feldgandler E.G. et al. Struktura i korroziya metallov i splavov. Atlas: Spravochnoye izdaniye [Structure and corrosion of metals and alloys. Atlas: Reference publication]. M.: Metallurgy. 1989. [In Russian]
- Yadav P., Abro M. A., Lee D.B., Yoon J. High-temperature corrosion of pure and its alloyed (2.99 wt.%Ti) in Ar-0.2% gas environment // Journal of Materials Research and Technology. 2022. 17. P. 3055-3065.
- Kai W., Lee S.H., Chiang D.L., Chu J.P. The high-temperature corrosion of Fe–28Al and Fe–18Al–10Nb in a gas mixture // Materials Science and Engineering. 1998. 258. P. 146–152.
- Kai W., Huang Y-J., Hsu Y-C., Huang R-T., Zhou Y., Kai J-J. The corrosion of FeCoNiAl-based medium- and high-entropy alloys in various ratios of /CO gas mixture // Intermetallics. 2024. 173. P. 108–431.
- Yu C., Zhang J., Young D. J. High temperature corrosion of Fe-Cr-(Mn/Si) alloys in gases // Corrosion Science. 2016. 112. P. 214–225.
- Shi S., Xu X., Lin X., Zhao W., Zhang Y., Hua Y., Su C., Sun C., Sun J. The temperature impact on the corrosion behavior of nickel-based alloy in a mixed gas during in-situ conversion of shale oil // Corrosion Science. 2025. 245. P. 112–713.
- Poilov V.Z., Kazantsev A.L., Skovorodnikov P.V., Saulin D.V., Uglev N.P., Puzanov A.I. Vysokotemperaturnaya gazovaya korroziya nikelevogo splava [High-temperature gas corrosion of nickel alloy] // Materials Science. 2021. №3. P. 42–46.
- Bakhirev S.O., Datsko A.I., Nosach A.Yu., Bychkov D.V. Issledovaniye vliyaniya sostava splavov na skorost’ gazovoy korrozii [Study of the influence of alloy composition on the rate of gas corrosion] // Problems of Science. 2017. 24. №11. P. 25–32. [In Russian]
- Saunders S.R.J., Monteiro M., Rizzo F. The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: A review // Progress in Materials Science. 2008. 53. P. 775–837. [In Russian]
- Henry S., Mougin J., Wouters Y., Petit J-P., Galerie A. Characterization of chromia scales grown on pure chromium in different oxidizing atmospheres // Materials at High Temperatures. 2000. 17. P. 231–234.
- Hultquist G., Tveten B., HoЁrnlund E. Hydrogen in chromium: influence on the high-temperature oxidation kinetics in , oxide-growth mechanisms, and scale adherence // Oxidation of Metals. 2000. 54. P. 1–10.
- Ehlers J., Young D.J., Smaardijk E.J., Tyagi A.K., Penkalla H.J., Singheiser L. et al. Enhanced oxidation of the 9% Cr steel P91 in water vapour containing environments // Corrosion Science. 2006. 48. P. 3428–3454.
- Schutze M., Renusch D., Schorr M. Chemical–mechanical failure of oxide scales on 9% Cr steels in air with // Materials at High Temperatures. 2005. 22. P. 113–120.
- Galerie A., Henry S., Wouters Y., Mermoux M., Petit J-P., Antoni L. Mechanisms of chromia scale failure during the course of 15–18Cr ferritic stainless steel oxidation in water vapour // Materials at High Temperatures. 2005. 22. P. 105–12.
- Zґurek J., Michalik M., Schmitz F., Kern T-U., Singheiser L., Quadakkers W.J. The effect of water-vapor content and gas flow rate on the oxidation mechanism of a 10%Cr–ferritic steel in Ar– mixtures // Oxidation of Metals. 2005. 63. P. 401–422.
- Cheng S-Y., Kuan S-L., Tsai W-T. Effect of water vapor on annealing scale formation on 316 SS // Corrosion Science. 2006. 48. P. 634–649.
- Peng X., Yan J., Zhou Y., Wang F. Effect of grain refinement on the resistance of 304 stainless steel to breakaway oxidation in wet air // Acta materialia. 2005. 53. P. 5079–5088.
- Shen J., Zhou L., Li T. High-temperature oxidation of Fe–Cr alloys in wet oxygen // Oxidation of Metals. 1997. 48. P. 347–356.
- Ehlers J., Young D.J., Smaardijk E.J., Tyagi A.K., Penkalla H.J., Singheiser L. et al. Enhanced oxidation of the 9% Cr steel P91 in water vapour containing environments // Corrosion Science. 2006. 48. P. 3428–3454.
- Rahmel A. Einfluss von Wasserdampf und Kohlendioxyd auf die Oxydation von Nickel in Sauerstoff bei Hohen Temperaturen // Corrosion Science. 1965. 5. P. 815–820.
- Hussain N., Qureshi A.H., Shahid K.A., Chughtai N.A., Khalid F.A. High-temperature oxidation behavior of HASTELLOY C-4 in steam // Oxidation of Metals. 2004. 61. P. 355–364.
- Hussain N., Shahid K.A., Khan I.H., Rahman S. Oxidation of high temperature alloys (superalloys) at elevated temperatures in air: 1 // Oxidation of Metals. 1994. 41. P. 251–270.
- Holcomb G.R., Alman D.E. The effect of manganese additions on the reactive evaporation of chromium in Ni–Cr alloys // Scripta materialia. 2006. 54. Р. 1821–1825.
- Zhou C., Yu J., Gong S., Xu H. Influence of water vapor on the isothermal oxidation behavior of low pressure plasma sprayed NiCrAlY coating at high temperature // Surface and Coatings Technology. 2002. 161. P. 86–91.
- Poquillon D., Monceau D. Application of a Simple Statistical Spalling Model for the Analysis of High-Temperature // Cyclic-Oxidation Kinetics Data. 2003. 59. P. 409–431.
- Vialas N., Monceau D., Pieraggi B. Effect of Cycle Frequency on High Temperature Oxidation Behavior of Alumina-forming Coatings Used for Industrial Gas Turbine Blades // Materials Science Forum. 2004. 461. 464. P. 747–754.
- Yuan J., Wu X., Wang W., Zhu S., Wang F. Investigation on the Enhanced Oxidation of Ferritic/Martensitic Steel P92 in Pure Steam // Materials. 2014. 7. P. 2772–2783.
- GOST 5632–2014. Legirovannyye nerzhaveyushchiye stali i splavy korrozionno-stoykiye, zharostoykiye i zharoprochnyye [Alloyed stainless steels and alloys, corrosion-resistant, heat-resistant and heat-resistant]. M.: Standartinform. 2015. [In Russian]
- GOST 9.305-84. Yedinaya sistema zashchity ot korrozii i stareniya. Pokrytiya metallicheskiye i nemetallicheskiye neorganicheskiye. Operatsii tekhnologicheskikh protsessov polucheniya pokrytiy [Unified system of protection against corrosion and aging. Metallic and non-metallic inorganic coatings. Operations of technological processes for obtaining coatings]. M: Standartinform. 1985. [In Russian]
Supplementary files
