The influence of the oxidation-reduction potential of the environment on the corrosion of 12Cr18Ni10Ti steel in the melt (LiCl-KCl)EUT.–UCl4/UCl3

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Currently, high-temperature technology for processing spent nuclear fuel using molten salts is being actively developed. One of the key stages of this technology is electro-refining using a salt composition based on LiCl-KCl as an electrolyte. High operating temperatures and changes in the composition of salt electrolytes as a result of ongoing technological processes cause increased aggressiveness of the melt with respect to structural materials. The work investigated the effect of changing the oxidation-reduction potential of the medium, set by introducing uranium chlorides into the salt electrolyte (the proportion of trivalent uranium chlorides in the additive 2 wt.% UCl4/UCl3 from 5 to 95%) on the corrosion characteristics of 12Cr18Ni10Ti stainless steel in a melt of lithium and potassium chlorides. Corrosion tests lasting 100 hours were carried out at a temperature of 550°C in an inert gas environment of argon with a water content of less than 0.1 ppm and oxygen content of less than 10 ppm. The oxidation-reduction potential of the environment was determined both relative to the chlorine and relative to the lithium dynamic reference electrode (Li+/Li). With the predominant introduction of UCl3 into the melt, a decrease in the corrosion rate is observed (up to 0.005 g/(m2•h)). In the same time with the introduction of the tetravalent form of uranium chloride a significant increase in the corrosion rate of 12Cr18Ni10Ti steel (up to 0.703 g/(m2•h)) relative to the corrosion rates obtained as a result of corrosion tests in the eutectic melt of LiCl-KCl without additives (0.062 g/(m2•h). With an experimentally measured value of the ORP of the melt (LiCl-KCl)eut.–UCl4/UCl3 (relative to the lithium dynamic reference electrode) from 1.78 to 2.08 V, the corrosion rate of 12Cr18Ni10Ti steel is lower than the value of the corrosion rate of this steel in the eutectic melt of lithium and potassium chlorides.

Full Text

Restricted Access

About the authors

E. A. Karfidov

Institute of High-Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: karfidov@ihte.ru
Russian Federation, Yekaterinburg

K. E. Seliverstov

Institute of High-Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences

Email: karfidov@ihte.ru
Russian Federation, Yekaterinburg

P. N. Mushnikov

Institute of High-Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences

Email: karfidov@ihte.ru
Russian Federation, Yekaterinburg

K. R. Karimov

Institute of High-Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences

Email: karfidov@ihte.ru
Russian Federation, Yekaterinburg

E. V. Nikitina

Institute of High-Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences

Email: karfidov@ihte.ru
Russian Federation, Yekaterinburg

A. E. Dedyukhin

Institute of High-Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences

Email: karfidov@ihte.ru
Russian Federation, Yekaterinburg

References

  1. Nikitina E.V., Tkacheva O.Yu., Karfidov E.A., Rudenko A.V., Mullabaev A.R. Vysokotemperaturnaya korroziya v rasplavlennykh solyakh: uchebnoye posobiye [High-temperature corrosion in molten salts: a tutorial] / Ed.by E.V. Nikitina; Ministry of Science and Higher Education of the Russian Federation, Ural Federal University. – Ekaterinburg: Publishing house of the Ural. In-ta. 2021. [In Russian]
  2. LeBlanc, D. Molten salt reactors: a new beginning for an old idea / D. LeBlanc // Nuclear Engineering and Design. 2010. 204. P.1644–1656.
  3. Kochergin V.P. Zashchita metallov ot korrozii v ionnykh rasplavakh i rastvorakh elektrolitov [Protection of metals from corrosion in ionic melts and electrolyte solutions] / V.P. Kochergin. – Ekaterinburg: Publishing house of Ural State University. 1991. [In Russian]
  4. Smirnov M.V., Ozeryanaya I.N. Korroziya metallov v rasplavlennykh solevykh sredakh i zashchita ot korrozii [Corrosion of metals in molten salt environments and corrosion protection]. Corrosion and corrosion protection. Results of science – M.: VINITI. 1973. 2. P.171–209. [In Russian]
  5. Guo S., Zhang J., Wu W., Zhou W. Corrosion in the molten fuoride and chloride salts and materials development for nuclear applications // Prog. Mater. Sci. 2018. 97. 448–487.
  6. Yingling J.A., Aziziha M., Schorne-Pinto J., Palma J.P.S., Ard J.C., Booth R.E., Dixon C.M., Besmann T.M. Thermodynamic Assessment of CrCl2 with NaCl-KCl-MgCl2-UCl3-UCl4 for Molten Chloride Reactor Corrosion Modeling // ACS Appl Energy Mater. 2023. 6. №11. P.5868–5882
  7. Gomez-Vidal J.C., Tirawat R. Corrosion of alloys in a chloride molten salt (NaCl-LiCl) for solar thermal technologies // Sol. Energy Mater. Sol. Cells. 2016. 157. P.234–244.
  8. Lu P., Liu Q., Bao H., Pan T.J., Tang Z. Effect of FeCl3 in NaClMgCl2 molten salts on the corrosion behavior of 316 stainless steel at 600°C // Corros. Sci. 2023. 212. 110961.
  9. Ding W., Bonk A., Bauer T. Corrosion behavior of metallic alloys in molten chloride salts for thermal energy storage in concentrated solar power plants: A review // Front. Chem. Sci. Eng. 2018. 12. P.564–576.
  10. Kurley J.M., Halstenberg P.W., McAlister A., Raiman S., Dai S., Mayes R.T. Enabling chloride salts for thermal energy storage: Implications of salt purity // RSC Adv. 2019. 9. 25602–25608.
  11. Nguyen T.D., van Rooijen W.F.G. Design of reactor physics experiments in support of chloride-fueled Molten Salt Reactor research & development. Ann. Nucl. Energy. 2023.
  12. van Oudenaren G.I.L., Ocadiz-Flores J.A., Smith A.L. Coupled structural-thermodynamic modelling of the molten salt system NaCl-UCl3. J. Mol. Liq. 2021.
  13. Li B., Dai S., Jiang D.-e. Molecular dynamics simulations of structural and transport properties of molten NaCl-UCl3 using the polarizable-ion model. J. Mol. Liq. 2020. 299. 112184.
  14. Sano Y., Ambai H., Takeuchi M., Iijima S., Uchida N. Efect of chloride ion on corrosion behavior of SUS316L-grade stainless steel in nitric acid solutions containing seawater components under γ–ray irradiation // J. Nucl. Mater. 2017. 493. P.200–206.
  15. Sooby E.S., Nelson A.T., White J.T., McIntyre P.M. Measurements of the liquidus surface and solidus transitions of the NaClUCl3 and NaCl-UCl3-CeCl3 phase diagrams // J. Nucl. Mater. 2015. 466. P. 280–285.
  16. Zhang H., Choi S., Zhang C., Faulkner E., Alnajjar N., Okabe P., Horvath D.C., Simpson M.F., Square wave voltammetry for real time analysis of minor metal ion concentrations in molten salt reactor fuel // J Nuclear Mater. 2019.
  17. Zhang H., Choi S., Hamilton D.E., Simpson M.F. Electroanalytical Measurements of UCl3 and CeCl3 in Molten NaCl-CaCl2 // J. Electrochem. Soc. 2021. 168. 056521.
  18. D’Souza B., Zhuo W., Yang Q., Leong A., Zhang J. Impurity driven corrosion behavior of HAYNES 230 alloy in molten chloride Salt. Corros. Sci. 2021. 109483.
  19. Ding W., Shi H., Xiu Y., Bonk A., Weisenburger A., Jianu A., Bauer T. Hot corrosion behavior of commercial alloys in thermal energy storage material of molten MgCl2/KCl/NaCl under inert atmosphere. Sol. Energy Mater. Sol. Cells. 2018. 184. P. 22–30.
  20. Pint B.A., Su Y.F., Sulejmanovic D., Pillai R. Characterization of Fe and Cr Dissolution and Reaction Product Formation in Molten Chloride Salts With and Without Impurities. Mater. High Temp. 2023. 2205754.
  21. Smirnov M.V., Ozeryanaya I.N. Osobennosti korrozii metallov v rasplavlennykh galogenidakh i karbonatakh [Peculiarities of metal corrosion in molten halides and carbonates] // High-temperature corrosion and methods of protection against it. 1973. № 1. P. 76–83. [In Russian]
  22. Kolotyrkin, Ya.M. Elektrokhimicheskiye aspekty korrozii metallov. Pittingovaya korroziya metallov [Electrochemical aspects of metal corrosion. Pitting corrosion of metals] // Protection of metals. 1975. 11. №6. P. 675–686. [In Russian]
  23. Ambrosek, J. Molten chloride salts for heat transfer in nuclear systems / J. Ambrosek // University of Wisconsin. 2011.
  24. Raiman, S.S. Aggregation and data analysis of corrosion studies in molten chloride and fluoride salts / S.S. Raiman, S. Lee // Journal of Nuclear Materials. 2018. 511. P. 523–535.
  25. Indacochea, J.E. Corrosion Performance of Ferrous and Refractory Metals in Molten Salts under Reducing Conditions / J.E. Indacochea, J.L. Smith, K.R. Litko, E.J. Karell // Journal of Materials Research. 1999. 14. № 5. P. 1990–1995.
  26. Nikolaev, A.Y. Purification of Alkali-Metal Chlorides by Zone Recrystallization for Use in Pyrochemical Processing of Spent Nuclear Fuel / A.Y. Nikolaev, A.R. Mullabaev, A.V. Suzdaltsev et al. // At Energy. 2022. 131. C. 195–201.
  27. Romanova D.O., Mullabaev A.R., Kovrov V.A. et. al. Determination of the Valent Forms of Uranium (III) and Uranium (IV) Present in the Chloride Melts of Alkaline Metals / // Russian Metallurgy (Metally). 2023. 2023. № 2. P. 248–256.
  28. Karfidov E.A. , Nikitina E.V. , Seliverstov K.E. , Mushnikov P.N. , Karimov K.R. Korrozionnoye povedeniye stali 12Cr18Ni10Ti v rasplave LiCl-KCl, soderzhashchem dobavki khloridov f-elementov [Corrosion behavior of 12Cr18Ni10Ti steel in LiCl-KCl melt containing f-element chloride additives] // Rasplavy (Melts). 2023. No. 4. P. 1–8. [In Russian]

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Appearance of 12Kh18N10T steel samples before and after corrosion tests in the melts under study: a) initial sample; b) (LiCl-KCl)eut.-2 wt.% (0.05UCl4/0.95UCl3); c) (LiCl-KCl)eut.-2 wt.% (0.25UCl4/0.75UCl3); d) (LiCl-KCl)eut.-2 wt.% (0.50UCl4/0.50UCl3); d) (LiCl-KCl)eut.-2 wt.% (0.75UCl4/0.25UCl3); e) (LiCl-KCl)eut.-2 wt.% (0.95UCl4/0.05UCl3)

Download (75KB)
3. Fig. 2. Dependence of ORP values ​​and corrosion rates of 12X18N10T steel in (LiCl-KCl)eut.-UCln (UCl4/UCl3) melts

Download (137KB)
4. Fig. 3. MRSA of cross-sectional sections of 12Kh18N10T steel samples before and after corrosion tests in melts (LiCl-KCl) eut.-2 wt. % UCln at a temperature of 550 ℃. The ratio of uranium chloride forms in the added additive: a) 0.95UCl4/0.05 UCl3; b) 0.05UCl4/0.95UCl3

Download (429KB)

Copyright (c) 2025 Russian Academy of Sciences