Impact of hydrocarbonate treatment on corrosion resistance of copper, nickel, and stainless steels in the NaOH melt
- Authors: Yurkinsky V.P.1, Firsova E.G.1, Baturova L.P.1
-
Affiliations:
- Peter the Great St. Petersburg Polytechnic University
- Issue: No 3 (2025)
- Pages: 261-274
- Section: Articles
- URL: https://ruspoj.com/0235-0106/article/view/686309
- DOI: https://doi.org/10.31857/S0235010625030079
- ID: 686309
Cite item
Abstract
The paper focuses on the research into impact of hydrocarbonate treatment in the boiling 1 М solution of NaHСО3 on the corrosion resistance of copper, nickel, and low-carbon chromium-nickel stainless steels during their corrosion testing in the NaOH melt at the range of temperatures from 400 to 500°С. The hydrocarbonate treatment of materials was conducted for two hours following holding them (treatment) in the NaOH melt preliminary dewatered and deaerated by Ar in intervals multiple of 96 h. The total duration of corrosion tests was 288 h. The microstructure and phase composition of surface layers that formed on materials under study during corrosion tests in the NaOH melt coupling with hydrocarbonate treatment were investigated using X-ray phase analysis and electron microscopy methods. It has been found that the hydrocarbonate treatment of materials neither affects the total corrosion rate for the materials under study in the NaOH melt in the given temperature range. It has been discovered that the hydrocarbonate treatment of nickel containing three oxide phases – NiO, Ni(OH)2 и γ-NiOOH – after being held in NaOH melt impacts the proportions of the oxide phases. Nickel oxyhydroxide (NiOOH) is unstable in aqueous weakly alkaline solutions bound to and is spontaneously reduced to nickel dioxide (NiOOH → Ni(OH)2) resulting in the formation of a passive film on the nickel surface. The film consists of two oxide phases (NiO и Ni(OH)2) and has high protective properties. In the course of the hydrocarbonate treatment of copper, which after having been held in the NaOH melt contains a 2-layer film of oxides Cu/Сu2О/СuО in the surface layer, oxide and carbonate layers with higher protective properties do not form. The hydrocarbonate treatment of stainless steel containing 17.5 and 18.5 % Ni and (6.0 – 6.5) % Mo demonstrating increased corrosion resistance in the NaOH melt at temperatures not exceeding 500°С (as nickel does) does not affect the corrosion resistance of the alloy elements. Doping the steel of the given composition with such alloying elements as copper, manganese, and silicon, which might cause local depassivation of steel under certain conditions, does not affect the protective properties of the passive steel film forming in the NаOH melt. Such film consists of oxides (hydroxides) of predominantly corrosion resistant chromium (Cr2O3) and nickel compounds (NiO, Ni(OH)2) or their mixed oxides NiCr2O4 (NiO∙Cr2O3), as well as ferrous oxides Fe3O4 γ-Fe2O3. As the nickel and molybdenum content in the steel decreases (to 13.0 % and 2.0 % respectively), or temperature of the NаOH melt increases up to 600°С, more defective porous oxide layers form on the steel surface. They contain a larger portion of less stable ferrous (II, III) and nickel (II) oxides: FeO, NiO, Fe2O3 as well as a small amount of mixed oxides NiCr2O4 (NiO∙Cr2O3) leading to increase in corrosion rate.
Full Text

About the authors
V. P. Yurkinsky
Peter the Great St. Petersburg Polytechnic University
Email: elena.firsova@mail.ru
Russian Federation, Saint-Petersburg
E. G. Firsova
Peter the Great St. Petersburg Polytechnic University
Author for correspondence.
Email: elena.firsova@mail.ru
Russian Federation, Saint-Petersburg
L. P. Baturova
Peter the Great St. Petersburg Polytechnic University
Email: elena.firsova@mail.ru
Russian Federation, Saint-Petersburg
References
- Beznosov A.V., Dragunov Yu.G., Rachkov V.I. Tyazhelyye zhidkometallicheskiye teplonositeli v atomnoy energetike. M.: Izd AT. 2007. [In Russian]
- Natriy. Svoystva, proizvodstvo, primeneniye. / Morachevskiy A.G., Shesterkin I.A., Busse-Machukas V.B. i dr. / Pod red. Morachevskogo A.G. SPb.: Khimiya. 1992. [In Russian]
- Morachevskiy A.G., Vaysgant Z.I., Demidov A.I. Pererabotka vtorichnogo svintsovogo syrya. SPb.: Khimiya, 1993. [In Russian]
- Morachevskiy A.G. Pererabotka vtorichnogo svintsovogo syrya: Sovrem. sostoyaniye issled. i annotir. ukaz. lit. za 1997-2001 gg. SPb.: Izd-vo SPbGPU. 2003. [In Russian]
- Delimarskiy Yu.K. Ionnyye rasplavy v sovremennoy tekhnike. M.: Metallurgiya. 1981. [In Russian]
- Delimarskiy Yu.K., Barchuk L.P. Prikladnaya khimiya ionnykh rasplavov. K.: Naukova dumka. 1988. [In Russian]
- Delimarskiy Yu.K., Fishman I.R., Zarubitskiy O.G. Elektrokhimicheskaya ochistka otlivok v ionnykh rasplavakh. M.: Mashinostroyeniye. 1976. [In Russian]
- Yurkinskiy V.P., Firsova Ye.G., Baturova L.P. Korrozionnaya stoykost ryada konstruktsionnykh materialov v rasplave NaOH // Zhurnal prikladnoy khimii. 2010. 83. № 10. P. 1677–1682. [In Russian]
- Yurkinskiy V.P., Firsova Ye.G., Baturova L.P. Osobennosti korrozionnogo povedeniya tantala, titana i ryada nemetallicheskikh materialov v rasplave NaOH // Zhurnal prikladnoy khimii. 2011. 84. № 5. P. 781–784. [In Russian]
- Yurkinskiy V.P., Firsova Ye.G., Baturova L.P., Kuzmina M.Yu. Korrozionnaya stoykost medno-nikelevykh splavov v rasplave NaOH // Khimicheskaya promyshlennost. 2012. 89. № 8. P. 416–419. [In Russian]
- Yurkinskiy V.P., Firsova Ye.G., Baturova L.P. Korrozionnaya stoykost svarnykh soyedineniy ryada konstruktsionnykh splavov v rasplave NaOH // Rasplavy. 2014. № 4. P. 53–59. [In Russian]
- Yurkinskiy V.P., Baturova L.P., Firsova Ye.G. Korrozionnaya stoykost staley v rasplave NaOH // Chernyye metally. 2014. № 4 (988). P. 73–77. [In Russian]
- GOST 9.907-2007. Metally, splavy, pokrytiya metallicheskiye. Metody udaleniya produktov korrozii posle korrozionnykh ispytaniy. M.: Standartinform. 2007. [In Russian]
- Batler Dzh.N. Ionnyye ravnovesiya. L.: Khimiya. 1973. [In Russian]
- Moiseyeva L.S., Kuksina O.V. O zavisimosti korrozii stali v beskislorodnoy vodnoy srede ot rN i davleniya SO2 // Zashchita metallov. 2003. 39. № 5. P. 542–551. [In Russian]
- Rabinovich V.A., Khavin Z.Ya. Kratkiy khimicheskiy spravochnik. SPb.: Khimiya. 1991. [In Russian]
- Lidin R.A., Andreyeva L.L., Molochko V.A. Spravochnik po neorganicheskoy khimii. M.: Khimiya. 1987. [In Russian]
- Makarenko V.D. Osnovy korrozionnogo razrusheniya truboprovodov : Uchebnoye posobiye / Makarenko V.D., Shatilo S.P., Zemenkov Yu.D., Bakharev M.S. / Pod red. V.D. Makarenko. Tyumen: TyumGNGU. 2009. [In Russian]
- Borshchevskiy A.M., Sukhotin A.M. Issledovaniye passivnogo sostoyaniya nikelya v kislykh i shchelochnykh sredakh mikrokulonometricheskim metodom // Zhurnal prikladnoy khimii. 1992. 65. № 9. P. 1942–1946. [In Russian]
- Pourbaix M. Atlas of electrochemical equilibria in aqueous solutions, Pergamon Press, Oxford. 1966.
- Glemser O., Einerhand J. Die Struktur hxherer Nickelhydroxide // Z. Anorg. Chem. 1950. Bd. 261. P. 43–51.
- Glemser O., Einerhand J. The chemical processes at the nickel hydroxide auode of the Edison storage battery // Z. Elektrochem. Angew. Physik. Chem. 1950. 54. P. 302–304.
- Kazarinov I.A., Volynskiy V.V., Klyuyev V.V., Novoselov M.A. Ot shchelochnykh akkumulyatorov k superkondensatoram. Oksidnonikelevyy elektrod: teoriya protsessov i sovremennyye tekhnologii yego izgotovleniya // Elektrokhimicheskaya energetika. 2017. 17. №4. P. 173–224. [In Russian]
- Miomandr F., Sadki S., Odeber P., Mealle-Reno R. Elektrokhimiya. M: Tekhnosfera. 2008. [In Russian]
- Strekalovskaya D., Baturova L., Kondrateva A., Semencha A., Andreeva V. Electrochromic Thin-film Nickel-oxide Coatings for Systems with Adjustable Light Transmission // Phys. Status Solidi A: Applications and Materials Science 2024. 221. №11.
- Damaskin B.B., Petriy O.A, Tsirlina G.A. Elektrokhimiya. M.: Khimiya, KolosS. 2008. [In Russian]
Supplementary files
