Dependence of liquid metals radiation on normalized entropy in the fifth period
- Authors: Kosenkov D.V.1, Sagadeev V.V.1
-
Affiliations:
- Kazan National Research Technological University, Kazan, Russia
- Issue: No 5 (2025)
- Pages: 444-454
- Section: Articles
- URL: https://ruspoj.com/0235-0106/article/view/691084
- DOI: https://doi.org/10.31857/S0235010625050037
- ID: 691084
Cite item
Abstract
This study presents a universal approach for describing thermal radiation of molten fifth-period d-metals (yttrium, zirconium, niobium, molybdenum, rhodium, palladium) using dimensional analysis based on Buckingham’s π-theorem. The key achievement is the reduction of complex mathematical descriptions of radiant heat flux density to a single dimensionless variable – the ratio of molar entropy to the universal gas constant (S/R).Critically, this approach significantly simplifies the analysis of radiative characteristics in liquid metals.Furthermore, the proposed methodology demonstrates remarkableuniversalityandreproducibilityacross the entire group of studied elements. The methodology involves flux normalization at a fixed S/R = 14 value, corresponding to the characteristic entropy disorder level of these metal melts. To account for temperature-dependent density variations, a reduced radiation flux is introduced, compensating for melt density changes with temperature. The logarithm of the ratio between reduced radiation flux and individual scale flux (defined for each metal at S/R = 14) follows an exponential dependence. The resulting universal correlation shows excellent consistency (R² ≥ 0.98) across all period elements, confirming its statistical significance. Predicted values calculated using this correlation agree well with both experimental measurements and approximated data, showing mean deviations of ~4.3%. Notably, the normalized scale flux exhibits periodic variations with increasing atomic number, mirroring the behavior of surface tension at melting points. This suggests a common structural-energy origin for both radiative and surface properties of molten metals. The developed approach enables reliable prediction of liquid d-metals’ emissivity in the absence of experimental data and provides a foundation for modeling complex multicomponent metallic systems. These results hold significant implications for metallurgy, materials science, and thermal physics applications, including alloy development and high-temperature process optimization.
About the authors
D. V. Kosenkov
Kazan National Research Technological University, Kazan, Russia
Email: dmi-kosenkov@yandex.ru
Kazan, Russia
V. V. Sagadeev
Kazan National Research Technological University, Kazan, Russia
Author for correspondence.
Email: dmi-kosenkov@yandex.ru
Kazan, Russia
References
- Svet D.Ya. Opticheskie metody izmereniya istinnykh temperatur [Optical methods for measuring true temperatures]. M.: Nauka. 1982. [In Russian]
- Izluchatel’nye svoystva tvyordykh materialov: Spravochnik [Radiative properties of solid materials: Handbook] / pod red. A.E. Sheindlina. M.: Energiya. 1974. [In Russian]
- Belashchenko D.K. Struktura zhidkikh i amorfnykh metallov [Structure of liquid and amorphous metals]. M.: Metallurgiya. 1985. [In Russian]
- Baum B.A. Metallicheskie zhidkosti [Metallic liquids]. M.: Nauka, 1979. [In Russian]
- Ashkroft N., Mermin N. Fizika tvyordogo tela. V 2 t. T. 1 [Solid state physics. In 2 v. V. 1]. M.: Mir. 1979. [In Russian]
- Irkhin V.Yu., Irkhin Yu.P. Elektronnaya struktura, fizicheskie svoystva i korrelyatsionnye effekty v d- i f-metallakh i ikh soedineniyakh [Electronic structure, physical properties and correlation effects in d- and f-metals and their compounds]. M.–Izhevsk: RKhD. 2008. [In Russian]
- Prikhod’ko I.M., Koshman V.S. O zakonomernostyakh dlya teployomkosti elementov periodicheskoy sistemy D.I. Mendeleeva [On the regularities for the heat capacity of the elements of D.I. Mendeleev’s periodic system] // Inzh.-fiz. zh. 1983. T.45.№ 6. S. 969. [In Russian]
- Vertogradskiy V.A. Korrelyatsiya kharaktera temperaturnoy zavisimosti elektrosoprotivleniya, znacheniy udel’nogo soprotivleniya i temperaturnogo koeffitsienta teploprovodnosti metallov [Correlation of the nature of the temperature dependence of electrical resistance, values of specific resistance and temperature coefficient of thermal conductivity of metals] // Inzh.-fiz. zh. 1974. T.27. № 4. S. 631. [In Russian]
- Piralishvili Sh.A., Veretennikov S.V., Gur’yanov A.I. Teoriya podobiya i analiz razmernostey [Similarity theory and dimensional analysis]. Rybinsk: RGATU im. P.A. Solov’eva. 2012. [In Russian]
- Panfilovich K.B. Teplovoe izluchenie i poverkhnostnoe natyazhenie zhidkikh metallov i splavov [Thermal radiation and surface tension of liquid metals and alloys]. Kazan’: KGTU. 2009. [In Russian]
- Kosenkov D.V., Sagadeev V.V., Kashapov N.F. Thermal Radiation of a Series of Liquid Metals // High Temp. 2022. V.60. P. 786–790. [In Russian]. https://doi.org/10.1134/S0018151X22060037
- Kosenkov D.V., Sagadeev V.V. Izluchatel’naya sposobnost’ elementov podgruppy skandiya [Emissivity of elements of the scandium subgroup] // Rasplavy. 2025. № 1. S. 35–45. [In Russian]. https://doi.org/10.31857/S0235010625010043
- Kosenkov D.V., Sagadeev V.V. Investigation of the emissivity of zirconium and hafnium in a wide temperature range // Technical Physics 2024. V.69. № 8. P. 1255–1260. [In Russian]. https://doi.org/10.61011/TP.2024.08.59014.278-23
- Kosenkov D.V., Sagadeev V.V., Alyaev V.A. The degree of blackness of a number of metals of group VIII of the periodic system // Thermophys. Aeromech. 2021. V.28. P. 907–912. [In Russian]. https://doi.org/10.1134/S0869864321060147
- Termodinamicheskie svoystva individual’nykh veshchestv: elektronnyy spravochnik: v 6 t. [Thermodynamic properties of individual substances: electronic handbook: in 6 vol.] / pod red. V.P. Gurvicha. M.: Nauka, 2010. URL: http://twt.mpei.ac.ru [In Russian].
- Arblaster J.W. The thermodynamic properties of palladium on ITS-90 // Calphad. 1995. V.19. I. 3. P. 327–337. https://doi.org/10.1016/0364-5916(95)00030-I
- Arblaster J.W. The thermodynamic properties of rhodium on ITS-90 // Calphad. 1995. V.19. I. 3. P. 357–364. https://doi.org/10.1016/0364-5916(95)00033-B
- Ntonti E., Sotiriadou S., Assael M.J. et al.Reference correlations for the density and thermal conductivity and review of viscosity measurements, of liquid titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, and tungsten // Int. J. Thermophys. 2024. V.45.№ 18. P. 1–40. https://doi.org/10.1007/s10765-023-03305-z
- Paradis P.F., Ishikawa T., Koike N. Thermophysical Properties of Molten Yttrium Measured by Non-contact Techniques // Microgravity Sci. Technol. 2009. V.21. P. 113–118. https://doi.org/10.1007/s12217-008-9074-8
- Paradis P.F., Ishikawa T., Saita Y. et al.Containerless Property Measurements of Liquid Palladium // Int. J. Thermophys. 2004. V.25. P. 1905–1912. https://doi.org/10.1007/s10765-004-7744-3
- Paradis P.F., Ishikawa T., Yoda S. Thermophysical Property Measurements of Supercooled and Liquid Rhodium // Int. J. Thermophys. 2003. V.24. P. 1121–1136. https://doi.org/10.1023/A:1025065304198
- Pottlacher G. High temperature thermophysical properties of 22 pure metals // High Temp.-High Press. 2022. V.51. № 1. P. 1–152.
- Siegel R., Howell J.R. Thermal Radiation Heat Transfer. New York: Taylor & Francis. 2010.
- Popel’ S.I. Poverkhnostnye yavleniya v rasplavakh [Surface phenomena in melts]. Moskva: Metallurgiya. 1994. [In Russian]
Supplementary files
