Chloride channels and transporters – role in the electrical activity of pacemaker and working myocardium
- Authors: Voronina Y.A.1,2, Karhov A.M.1,2, Kuzmin V.S.1,2
-
Affiliations:
- Moscow State University
- Chazov National Medical Research Centre of Cardiology
- Issue: Vol 55, No 4 (2024)
- Pages: 75-90
- Section: Articles
- URL: https://ruspoj.com/0301-1798/article/view/676185
- DOI: https://doi.org/10.31857/S0301179824040041
- EDN: https://elibrary.ru/AHBULD
- ID: 676185
Cite item
Abstract
Chlorine anions have a significant influence on the electrophysiological properties of excitable tissues, including myocardium. Chlorine anions and transmembrane chloride currents (ICl) determine the configuration of action potentials (AP) in various regions of hearts. Disruption of transmembrane chloride transport leads to alterations in normal electrical activity, resulting in cardiac pathologies and arrhythmias. Currently, chloride conductivity and expression in the heart and a functional role have been confirmed for several types of macromolecules. These channels include CFTR, ClC-2, CaCC (TMEM16), and VRAC (LRRC8x). Additionally, chloride cotransporters (KCC, NKCC) and chloride-bicarbonate exchangers make a significant contribution to the regulation of intracellular chlorid ion concentration ([Cl-]i) and, consequently, the equilibrium potential for chloride ions (ECl). The review covers the mechanisms by which chloride transmembrane transport influences the bioelectrical activity of cardiomyocytes and the potential functions of chloride and chloride currents in specialized regions of the heart.
Full Text

About the authors
Y. A. Voronina
Moscow State University; Chazov National Medical Research Centre of Cardiology
Author for correspondence.
Email: voronina.yana.2014@post.bio.msu.ru
Department of Human and Animal Physiology, Faculty of Biology; Smirnov Institute of Experimental Cardiology
Russian Federation, Moscow, 119234; Moscow, 121552A. M. Karhov
Moscow State University; Chazov National Medical Research Centre of Cardiology
Email: akarchoff@gmail.com
Department of Human and Animal Physiology, Faculty of Biology; Smirnov Institute of Experimental Cardiology
Russian Federation, Moscow, 119234; Moscow, 121552V. S. Kuzmin
Moscow State University; Chazov National Medical Research Centre of Cardiology
Email: ku290381@mail.ru
Department of Human and Animal Physiology, Faculty of Biology; Smirnov Institute of Experimental Cardiology
Russian Federation, Moscow, 119234; Moscow, 121552References
- Akita H., Yoshie S., Ishida T., Takeishi Y., Hazama A. Negative chronotropic and inotropic effects of lubiprostone on iPS cell-derived cardiomyocytes via activation of CFTR // BMC Complement Med. Ther. 2020. V. 20. № 1. P. 1–10. https://doi.org/10.1186/s12906-020-02923-6
- Alvarez B.V., Fujinaga J., Casey J.R. Molecular basis for angiotensin II-induced increase of chloride/bicarbonate exchange in the myocardium // Circ. Res. 2001. V. 89. № 12. P. 1246–1253. https://doi.org/10.1161/hh2401.101907
- Andersen G.O., Oie E., Vinge L.E. et al. Increased expression and function of the myocardial Na-K-2Cl cotransporter in failing rat hearts // Basic. Res. Cardiol. 2006. V. 101. № 6. P. 471–478. https://doi.org/10.1007/s00395-006-0604-5
- Andersen G.O., Skomedal T., Enger M. et al. α1-AR-mediated activation of NKCC in rat cardiomyocytes involves ERK-dependent phosphorylation of the cotransporter // Am. J. Physiol. – Hear. Circ. Physiol. 2004. V. 286. № 55. P. 1354–1360. https://doi.org/10.1152/ajpheart.00549.2003
- Anfinogenova Y.J., Baskakov M.B., Kovalev I.V. et al. Cell-volume-dependent vascular smooth muscle contraction: Role of Na +, K+, 2Cl-cotransport, intracellular Cl – and L-type Ca2+ channels // Pflugers Arch. Eur. J. Physiol. 2004. V. 449. № 1. P. 42–55. https://doi.org/10.1007/s00424-004-1316-z
- Britton F.C., Hatton W.J., Rossow C.F. et al. Molecular distribution of volume-regulated chloride channels (ClC-2 and ClC-3) in cardiac tissues // Am. J. Physiol. – Hear. Circ. Physiol. 2000. V. 279. № 48. P. 2225–2233. https://doi.org/10.1152/ajpheart.2000.279.5.h2225
- Britton F.C., Wang G.L., Huang Z.M. et al. Functional characterization of novel alternatively spliced ClC-2 chloride channel variants in the heart // J. Biol. Chem. 2005. V. 280. № 27. P. 25871–25880. https://doi.org/10.1074/jbc.M502826200
- Brown H.F., Giles W., Noble S.J. Membrane currents underlying activity in frog sinus venosus // J. Physiol. 1977. V. 271. № 3. P. 783–816. https://doi.org/10.1113/jphysiol.1977.sp012026
- Chen H., Liu L.L., Ye L.L. et al. Targeted inactivation of cystic fibrosis transmembrane conductance regulator chloride channel gene prevents ischemic preconditioning in isolated mouse heart // Circulation. 2004. V. 110. № 6. P. 700–704. https://doi.org/10.1161/01.CIR.0000138110.84758.BB
- Chiappe De Cingolani G., Morgan P., Mundiña-Weilenmann C. et al. Hyperactivity and altered mRNA isoform expression of the Cl-/HCO3- anion-exchanger in the hypertrophied myocardium // Cardiovasc, Res. 2001. V. 51, № 1. P. 71–79. https://doi.org/10.1016/S0008-6363(01)00276-0
- Cingolani H.E., Chiappe G.E., Ennis I.L. et al. Influence of Na+-Independent Cl--HCO3- Exchange on the Slow Force Response to Myocardial Stretch // Circ. Res. 2003. V. 93. № 11. P. 1082–1088. https://doi.org/10.1161/01.RES.0000102408.25664.01
- Cohn J.A., Nairn A.C., Marino C.R., Melhus O., Kole J. Characterization of the cystic fibrosis transmembrane conductance regulator in a colonocyte cell line // Proc. Natl. Acad. Sci. USA. 1992. V. 89. № 6. P. 2340–2344. https://doi.org/10.1073/pnas.89.6.2340
- Counillon L., Pouysségur J. The expanding family of eucaryotic Na+/H+ exchangers // J. of Biol. Chem. 2000. V. 275. № 1. P. 1–4. https://doi.org/10.1074/jbc.275.1.1
- Csanády L., Vergani P., Gadsby D.C. Structure, gating, and regulation of the CFTR anion channel // Physiol. Rev. 2019. V. 99. № 1. P. 707–738. https://doi.org/10.1152/physrev.00007.2018
- Cuppoletti J., Tewari K.P., Sherry A.M., Ferrante C.J., Malinowska D.H. Sites of protein kinase A activation of the human ClC-2 Cl- channel // J. Biol. Chem. 2004. V. 279. № 21. P. 21849–56. https://doi.org/10.1074/jbc.M312567200
- Duan D. Phenomics of cardiac chloride channels: The systematic study of chloride channel function in the heart // J. of Physiol. 2009. V. 587. P. 2163–2177. https://doi.org/10.1113/jphysiol.2008.165860
- Duan D., Hume J.R., Nattel S. Evidence that outwardly rectifying Cl– channels underlie volume- regulated Cl– currents in heart // Circ. Res. 1997. V. 80. № 1. P. 103–113. https://doi.org/10.1161/01.RES.80.1.103
- Duan D., Ye L., Britton F., Horowitz B., Hume J.R. A novel anionic inward rectifier in native cardiac myocytes. // Circ. Res. 2000. V. 86. № 4. P. 1–9. https://doi.org/10.1161/01.res.86.4.e63
- Duan D., Ye L., Britton F. et al. Purinoceptor-coupled Cl- channels in mouse heart: A novel, alternative pathway for CFTR regulation // J. Physiol. 1999. V. 521. № 1. P. 43–56. https://doi.org/10.1111/j.1469-7793.1999.00043.x
- Duan D.D. The ClC-3 chloride channels in cardiovascular disease // Acta Pharmacol. Sin. 2011. V. 32. № 6. P. 675–684. https://doi.org/10.1038/aps.2011.30
- Duan D.D. Phenomics of cardiac chloride channels // Compr. Physiol. 2013. V. 3. № 2. P. 667–692. https://doi.org/10.1113/jphysiol.2008.165860
- Duan D.Y., Liu L.L.H., Bozeat N. et al. Functional role of anion channels in cardiac diseases // Acta Pharm. Sinica. 2005. V. 26. № 3. P. 265–287. https://doi.org/10.1111/j.1745-7254.2005.00061.x
- Duran C., Thompson C.H., Xiao Q., Hartzell H.C. Chloride channels: Often enigmatic, rarely predictable // Annu. Rev. Physiol. 2009. V. 72. P. 95–121. https://doi.org/10.1146/annurev-physiol-021909-135811
- Egorov Y.V., Lang D., Tyan L. et al. Caveolae-Mediated Activation of Mechanosensitive Chloride Channels in Pulmonary Veins Triggers Atrial Arrhythmogenesis // J. Am. Heart Assoc. 2019. V. 8. № 20. P. 1–41. https://doi.org/10.1161/JAHA.119.012748
- Ennis I.L., Alvarez B.V., Camilión De Hurtado M.C., Cingolani H.E. Enalapril induces regression of cardiac hypertrophy and normalization of pH(i) regulatory mechanisms // Hypertension. 1998. V. 31. № 4. P. 961–967. https://doi.org/10.1161/01.HYP.31.4.961
- Frace A.M., Maruoka F., Noma A. Control of the hyperpolarization‐activated cation current by external anions in rabbit sino‐atrial node cells. // J. Physiol. 1992. V. 453. № 1. P. 307–318. https://doi.org/10.1113/jphysiol.1992.sp019230
- Fritsch J., Edelman A. Modulation of the hyperpolarization-activated Cl- current in human intestinal T84 epithelial cells by phosphorylation // J. Physiol. 1996. V. 490. № 1. P. 115–128. https://doi.org/10.1113/jphysiol.1996.sp021130
- Fülöp L., Fiák E., Szentandrássy N. et al. The role of transmembrane chloride current in afterdepolarisations in canine ventricular cardiomyocytes // Gen. Physiol. Biophys. 2003. V. 22. № 3. P. 341–353.
- Gao Z., Sun H.Y., Lau C.P., Chin-Wan Fung P., Li G.R. Evidence for cystic fibrosis transmembrane conductance regulator chloride current in swine ventricular myocytes // J Mol. Cell Cardiol. 2007. V. 42. № 1. P. 98–105. https://doi.org/10.1016/j.yjmcc.2006.10.002
- Han Y.E., Kwon J., Won J. et al. Tweety-homolog (Ttyh) family encodes the pore-forming subunits of the swelling-dependent volume-regulated anion channel (VRACswell) in the brain // Exp. Neurobiol. 2019. V. 28. № 2. P. 183–215. https://doi.org/10.5607/en.2019.28.2.183
- Hansen T.H., Yan Y., Ahlberg G. et al. A Novel Loss-of-Function Variant in the Chloride Ion Channel Gene Clcn2 Associates with Atrial Fibrillation // Sci. Rep. 2020. V. 10. № 1. P. 1–10. https://doi.org/10.1038/s41598-020-58475-9
- Hart P., Warth J.D., Levesque P.C. et al. Cystic fibrosis gene encodes a cAMP-dependent chloride channel in heart // Proc. Natl. Acad. Sci. USA. 1996. V. 93. № 13. P. 6343–6348. https://doi.org/10.1073/pnas.93.13.6343
- Hegyi B., Horváth B., Váczi K. et al. Ca2+–activated Cl− current is antiarrhythmic by reducing both spatial and temporal heterogeneity of cardiac repolarization // J. Mol. Cell. Cardiol. 2017. V. 109. P. 27–37. https://doi.org/10.1016/j.yjmcc.2017.06.014
- Hiraoka M., Kawano S., Hirano Y., Furukawa T. Role of cardiac chloride currents in changes in action potential characteristics and arrhythmias // Cardiovasc. Res. 1998. V. 40. № 1. P. 23–33. https://doi.org/10.1016/S0008-6363(98)00173-4
- Hirayama Y., Kuruma A., Hiraoka M., Kawano S. Calcium-activated Cl- current is enhanced by acidosis and contributes to the shortening of action potential duration in rabbit ventricular myocytes // Jpn. J. Physiol. 2002. V. 52. № 3. P. 293–300. https://doi.org/10.2170/jjphysiol.52.293
- Horváth B., Váczi K., Hegyi B. et al. Sarcolemmal Ca2+-entry through L-type Ca2+ channels controls the profile of Ca2+-activated Cl– current in canine ventricular myocytes // J. Mol. Cell Cardiol. 2016. V. 97. P. 125–139. https://doi.org/10.1016/j.yjmcc.2016.05.006
- Huang Z.M., Prasad C., Britton F.C. et al. Functional role of CLC-2 chloride inward rectifier channels in cardiac sinoatrial nodal pacemaker cells // J. Mol. Cell Cardiol. 2009. V. 47. № 1. P. 121–132. https://doi.org/10.1016/j.yjmcc.2009.04.008
- Hume J.R., Duan D., Collier M.L., Yamazaki J., Horowitz B. Anion transport in heart // Physiol. Rev. 2000. V. 80. № 1. P. 31–81. https://doi.org/10.1152/physrev.2000.80.1.31
- Hume J.R., Hart P., Levesque P.C. et al. Molecular physiology of CFTR Cl– channels in heart // Jpn. J. Physiol. 1994. V. 44. № 2.
- Hutter O.F., Noble D. Anion conductance of cardiac muscle // J. Physiol. 1961. V. 157. № 2. P. 335–350. https://doi.org/10.1113/jphysiol.1961.sp006726
- James A.F. Enigmatic variations: The many facets of CFTR function in the heart // Acta Physiol. 2020. V. 230. № 1. P. 5–6. https://doi.org/10.1111/apha.13525
- January C.T., Fozzard H.A. Delayed afterdepolarizations in heart muscle: Mechanisms and relevance // Pharmacol. Rev. 1988. V. 40. № 3.
- Jentsch T.J., Pusch M. CLC chloride channels and transporters: Structure, function, physiology, and disease // Physiol. Rev. 2018. V. 98. № 3. P. 1493–1590. https://doi.org/10.1152/physrev.00047.2017
- Jeulin C., Guadagnini R., Marano F. Oxidant stress stimulates Ca2+-activated chloride channels in the apical activated membrane of cultured nonciliated human nasal epithelial cells // Am. J. Physiol. – Lung Cell Mol. Physiol. 2005. V. 289. № 33. P. 636–646. https://doi.org/10.1152/ajplung.00351.2004
- Jiang K., Jiao S., Vitko M. et al. The impact of Cystic Fibrosis Transmembrane Regulator Disruption on cardiac function and stress response // J. Cyst. Fibros. 2016. V. 15. № 1. P. 34–42. https://doi.org/10.1016/j.jcf.2015.06.003
- Jin X., Shah S., Liu Y. et al. Activation of the Cl– Channel ANO1 by localized calcium signals in nociceptive sensory neurons requires coupling with the IP3 receptor // Sci. Signal. 2013. V. 6. № 290. https://doi.org/10.1126/scisignal.2004184
- Kim H.J., Myers R., Sihn C.R. et al. Slc26a6 functions as an electrogenic Cl/HCO3 exchanger in cardiac myocytes // Cardiovasc. Res. 2013. V. 100. № 3. P. 383–391. https://doi.org/10.1093/cvr/cvt195
- Komukai K., Brette F., Orchard C.H. Electrophysiological response of rat atrial myocytes to acidosis // Am. J. Physiol. – Hear. Circ. Physiol. 2002. V. 283. № 52–2. P. 715–724. https://doi.org/10.1152/ajpheart.01000.2001
- Kunzelmann K. CFTR: Interacting with everything? // News Physiol. Sci. 2001. V. 16. № 4. P. 167–170. https://doi.org/10.1152/physiologyonline.2001.16.4.167
- Kuzumoto M., Takeuchi A., Nakai H. et al. Simulation analysis of intracellular Na+ and Cl–homeostasis during β1-adrenergic stimulation of cardiac myocyte // Prog. Biophys. Mol. Biol. 2008. V. 96. № 1–3. P. 171–186. https://doi.org/10.1016/j.pbiomolbio.2007.07.005
- Lader A.S., Wang Y., Jackson G.R., Borkan S.C., Cantiello H.F. cAMP-activated anion conductance is associated with expression of CFTR in neonatal mouse cardiac myocytes // Am. J. Physiol. – Cell Physiol. 2000. V. 278. № 47–2. P. 436–440. https://doi.org/10.1152/ajpcell.2000.278.2.c436
- Lai Z.F., Nishi K. Intracellular chloride activity increases in guinea pig ventricular muscle during simulated ischemia // Am. J. Physiol. – Hear. Circ. Physiol. 1998. V. 44. № 5. P. 1613–1619. https://doi.org/10.1152/ajpheart.1998.275.5.h1613
- Leem C.H., Lagadic-Gossmann D., Vaughan-Jones R.D. Characterization of intracellular pH regulation in the guinea-pig ventricular myocyte // J. Physiol. 1999. V. 517. № 1. P. 159–180. https://doi.org/10.1111/j.1469-7793.1999.0159z.x
- Li B., Hoel C.M., Brohawn S.G. Structures of tweety homolog proteins TTYH2 and TTYH3 reveal a Ca2+-dependent switch from intra- to intermembrane dimerization // Nat. Commun. 2021. V. 12. № 1. P. 1–9. https://doi.org/10.1038/s41467-021-27283-8
- Li C., Huang D., Tang J. et al. ClC-3 chloride channel is involved in isoprenaline-induced cardiac hypertrophy // Gene. 2018. V. 642. P. 335–342. https://doi.org/10.1016/j.gene.2017.11.045
- Litviňuková M., Talavera-López C., Maatz H. et al. Cells of the adult human heart // Nature. 2020. V. 588. № 7838. P. 466–472. https://doi.org/10.1038/s41586-020-2797-4
- Meor Azlan N.F., Zhang J. Role of the Cation-Chloride-Cotransporters in Cardiovascular Disease // Cells. 2020. V. 9. № 10. P. 1–21. https://doi.org/10.3390/cells9102293
- Miller A.N., Vaisey G., Long S.B. Molecular mechanisms of gating in the calcium-activated chloride channel bestrophin // Elife. 2019. V. 8. P. 1–17. https://doi.org/10.7554/eLife.43231
- Modi A.D., Khan A.N., Cheng W.Y.E., Modi D.M. KCCs, NKCCs, and NCC: Potential targets for cardiovascular therapeutics? A comprehensive review of cell and region specific expression and function // Acta Histochem. 2023. V. 125. № 4. https://doi.org/10.1016/j.acthis.2023.152045
- Okada Y., Sabirov R.Z., Merzlyak P.G., Numata T., Sato-Numata K. Properties, Structures, and Physiological Roles of Three Types of Anion Channels Molecularly Identified in the 2010’s // Front. Physiol. 2021. V. 12. P. 1–12. https://doi.org/10.3389/fphys.2021.805148
- Orlov S.N., Koltsova S.V., Kapilevich L.V., Dulin N.O., Gusakova S.V. Cation-chloride cotransporters: Regulation, physiological significance, and role in pathogenesis of arterial hypertension // Biochem. 2014. V. 79. № 13. P. 1546–1561. https://doi.org/10.1134/S0006297914130070
- Owji A.P., Kittredge A., Zhang Y., Yang T. Structure and Function of the Bestrophin family of calcium-activated chloride channels // Channels. 2021. V. 15. № 1. 604–623. https://doi.org/10.1080/19336950.2021.1981625
- Prasad V., Bodi I., Meyer J.W. et al. Impaired cardiac contractility in mice lacking both the AE3 Cl–/HCO3– exchanger and the NKCC1 Na +–K+–2Cl– cotransporter: Effects on Ca 2+ handling and protein phosphatases // J. Biol Chem. 2008. V. 283. № 46. https://doi.org/10.1074/jbc.M803706200
- Ruiz Petrich E., Ponce Zumino A., Schanne O.F. Early action potential shortening in hypoxic hearts: Role of chloride current(s) mediated by catecholamine release // J. Mol. Cell Cardiol. 1996. V. 28. № 2. P. 279–290. https://doi.org/10.1006/jmcc.1996.0026
- Scherer C., Linz W., Busch A., Steinmeyer K. Gene expression profiles of CLC chloride channels in animal models with different cardiovascular diseases // Cell Physiol. Biochem. 2001. V. 11. № 6. P. 321–330. https://doi.org/10.1159/000047818
- Sellers Z.M., De Arcangelis V., Xiang Y., Best P.M. Cardiomyocytes with disrupted CFTR function require CaMKII and Ca2+-activated Cl- channel activity to maintain contraction rate // J. Physiol. 2010. V. 588. № 13. P. 2417–2429. https://doi.org/10.1113/jphysiol.2010.188334
- Seyama I. Characteristics of the anion channel in the sino‐atrial node cell of the rabbit. // J. Physiol. 1979. V. 294. № 1. P. 447–460. https://doi.org/10.1113/jphysiol.1979.sp012940
- Sherry A.M., Stroffekova K., Knapp L.M. et al. Characterization of the human pH- and PKA-activated CIC-2G(2α) Cl– channel // Am. J. Physiol. – Cell Physiol. 1997. V. 273. № 42–2. P. 384–393. https://doi.org/10.1152/ajpcell.1997.273.2.c384
- Szigeti G., Rusznák Z., Kovács L., Papp Z. Calcium-activated transient membrane currents are carried mainly by chloride ions in isolated atrial, ventricular and Purkinje cells of rabbit heart // Exp. Physiol. 1998. V. 83. № 2. P. 137–153. https://doi.org/10.1113/expphysiol.1998.sp004097
- Takagi D., Okamoto Y., Ohba T., Yamamoto H., Ono K. Comparative study of hyperpolarization-activated currents in pulmonary vein cardiomyocytes isolated from rat, guinea pig, and rabbit // J. Physiol. Sci. 2020. V. 70. № 1. P. 1–20. https://doi.org/10.1186/s12576-020-00736-3
- Tilly B.C., Bezstarosti K., Boomaars W.E.M. et al. Expression and regulation of chloride channels in neonatal rat cardiomyocytes // Mol. Cell Biochem. 1996. V. 157. № 1–2. P. 129–135. https://doi.org/10.1007/bf00227891
- Uramoto H., Takahashi N., Dutta A.K. et al. Ischemia-Induced Enhancement of CFTR Expression on the Plasma Membrane in Neonatal Rat Ventricular Myocytes // Jpn. J. Physiol. 2003. V. 53. № 5. P. 357–365. https://doi.org/10.2170/jjphysiol.53.357
- Valverde C.A., Kornyeyev D., Ferreiro M. et al. Transient Ca2+ depletion of the sarcoplasmic reticulum at the onset of reperfusion // Cardiovasc. Res. 2010. V. 85. № 4. P. 671–680. https://doi.org/10.1093/cvr/cvp371
- Vandenberg J.I., Bett G.C.L., Powell T. Contribution of a swelling-activated chloride current to changes in the cardiac action potential // Am. J. Physiol. – Cell Physiol. 1997. V. 273. № 42–2. P. 541–547. https://doi.org/10.1152/ajpcell.1997.273.2.c541
- Voronina Y.A., Fedorov A.V., Chelombitko M.A., Piunova U.E., Kuzmin V.S. α1-Adrenergic Receptors Control the Activity of Sinoatrial Node by Modulating Transmembrane Transport of Chloride Anions // Biochem. Suppl. Ser. A Membr. Cell Biol. 2023. V. 17. № 4. P. 39–50. https://doi.org/10.1134/S1990747823070061
- Wang H.S. Critical role of bicarbonate and bicarbonate transporters in cardiac function // World J. Biol. Chem. 2014. V. 5. № 3. P. 334. https://doi.org/10.4331/wjbc.v5.i3.334
- Wang J., Wang W., Wang H., Tuo B. Physiological and Pathological Functions of SLC26A6 // Front. Med. 2020. V. 7. P. 1–13. https://doi.org/10.3389/fmed.2020.618256
- Warth J.D., Collier M.L., Hart P. et al. CFTR chloride channels in human and simian heart // Cardiovasc Res. 1996. V. 31. № 4. P. 615–624. https://doi.org/10.1016/0008-6363(95)00245-6
- Xiang S.Y., Ye L.L., Duan L.L.M. et al. Characterization of a critical role for CFTR chloride channels in cardioprotection against ischemia/reperfusion injury // Acta Pharmacol Sin. 2011. V. 32. № 6. P. 824–833. https://doi.org/10.1038/aps.2011.61
- Xiong D., Heyman N.S., Airey J. et al. Cardiac-specific, inducible ClC-3 gene deletion eliminates native volume-sensitive chloride channels and produces myocardial hypertrophy in adult mice // J. Mol. Cell Cardiol. 2010. V. 48. № 1. P. 211–219. https://doi.org/10.1016/j.yjmcc.2009.07.003
- Xu Y., Dong P.H., Zhang Z., Ahmmed G.U., Chiamvimonvat N. Presence of a calcium-activated chloride current in mouse ventricular myocytes // Am. J. Physiol. – Hear. Circ. Physiol. 2002. V. 283. № 52–1. P. 302–314. https://doi.org/10.1152/ajpheart.00044.2002
- Ye Z., Wu M.M., Wang C.Y. et al. Characterization of cardiac anoctamin1 Ca2+-activated chloride channels and functional role in ischemia-induced arrhythmias // J. Cell Physiol. 2015. V. 230. № 2. P. 337–346. https://doi.org/10.1002/jcp.24709
- Yu Y., Ye L., Li Y.G., Burkin D.J., Duan D.D. Heart-specific overexpression of the human short CLC-3 chloride channel isoform limits myocardial ischemia-induced ERP and QT prolongation // Int. J. Cardiol. 2016. V. 214. P. 218–224. https://doi.org/10.1016/j.ijcard.2016.03.191
- Zygmunt A.C. Intracellular calcium activates a chloride current in canine ventricular myocytes // Am. J. Physiol. – Hear. Circ. Physiol. 1994. V. 267. № 36–5. P. 1984–1995. https://doi.org/10.1152/ajpheart.1994.267.5.h1984
- Zygmunt A.C., Gibbons W.R. Calcium-activated chloride current in rabbit ventricular myocytes // Circ Res. 1991. V. 68. № 2. P. 424–437. https://doi.org/10.1113/expphysiol.1998.sp004097
- Zygmunt A.C., Gibbons W.R. Properties of the calcium-activated chloride current in heart // J. Gen Physiol. 1992. V. 99. № 3. P. 391–414. https://doi.org/10.1085/jgp.99.3.391
- Zygmunt A.C., Goodrow R.J., Weigel C.M. et al. INaCa and ICl(Ca) contribute to isoproterenol-induced delayed afterdepolarizations in midmyocardial cells INaCa and ICl(Ca) contribute to isoproterenol-induced delayed afterdepolarizations in midmyocardial cells // Am. J. Physiol. 2013. V. 275. № 6. P. 1979–1992.
Supplementary files
