Chloride channels and transporters – role in the electrical activity of pacemaker and working myocardium

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Chlorine anions have a significant influence on the electrophysiological properties of excitable tissues, including myocardium. Chlorine anions and transmembrane chloride currents (ICl) determine the configuration of action potentials (AP) in various regions of hearts. Disruption of transmembrane chloride transport leads to alterations in normal electrical activity, resulting in cardiac pathologies and arrhythmias. Currently, chloride conductivity and expression in the heart and a functional role have been confirmed for several types of macromolecules. These channels include CFTR, ClC-2, CaCC (TMEM16), and VRAC (LRRC8x). Additionally, chloride cotransporters (KCC, NKCC) and chloride-bicarbonate exchangers make a significant contribution to the regulation of intracellular chlorid ion concentration ([Cl-]i) and, consequently, the equilibrium potential for chloride ions (ECl). The review covers the mechanisms by which chloride transmembrane transport influences the bioelectrical activity of cardiomyocytes and the potential functions of chloride and chloride currents in specialized regions of the heart.

Full Text

Restricted Access

About the authors

Y. A. Voronina

Moscow State University; Chazov National Medical Research Centre of Cardiology

Author for correspondence.
Email: voronina.yana.2014@post.bio.msu.ru

Department of Human and Animal Physiology, Faculty of Biology; Smirnov Institute of Experimental Cardiology

Russian Federation, Moscow, 119234; Moscow, 121552

A. M. Karhov

Moscow State University; Chazov National Medical Research Centre of Cardiology

Email: akarchoff@gmail.com

Department of Human and Animal Physiology, Faculty of Biology; Smirnov Institute of Experimental Cardiology

Russian Federation, Moscow, 119234; Moscow, 121552

V. S. Kuzmin

Moscow State University; Chazov National Medical Research Centre of Cardiology

Email: ku290381@mail.ru

Department of Human and Animal Physiology, Faculty of Biology; Smirnov Institute of Experimental Cardiology

Russian Federation, Moscow, 119234; Moscow, 121552

References

  1. Akita H., Yoshie S., Ishida T., Takeishi Y., Hazama A. Negative chronotropic and inotropic effects of lubiprostone on iPS cell-derived cardiomyocytes via activation of CFTR // BMC Complement Med. Ther. 2020. V. 20. № 1. P. 1–10. https://doi.org/10.1186/s12906-020-02923-6
  2. Alvarez B.V., Fujinaga J., Casey J.R. Molecular basis for angiotensin II-induced increase of chloride/bicarbonate exchange in the myocardium // Circ. Res. 2001. V. 89. № 12. P. 1246–1253. https://doi.org/10.1161/hh2401.101907
  3. Andersen G.O., Oie E., Vinge L.E. et al. Increased expression and function of the myocardial Na-K-2Cl cotransporter in failing rat hearts // Basic. Res. Cardiol. 2006. V. 101. № 6. P. 471–478. https://doi.org/10.1007/s00395-006-0604-5
  4. Andersen G.O., Skomedal T., Enger M. et al. α1-AR-mediated activation of NKCC in rat cardiomyocytes involves ERK-dependent phosphorylation of the cotransporter // Am. J. Physiol. – Hear. Circ. Physiol. 2004. V. 286. № 55. P. 1354–1360. https://doi.org/10.1152/ajpheart.00549.2003
  5. Anfinogenova Y.J., Baskakov M.B., Kovalev I.V. et al. Cell-volume-dependent vascular smooth muscle contraction: Role of Na +, K+, 2Cl-cotransport, intracellular Cl – and L-type Ca2+ channels // Pflugers Arch. Eur. J. Physiol. 2004. V. 449. № 1. P. 42–55. https://doi.org/10.1007/s00424-004-1316-z
  6. Britton F.C., Hatton W.J., Rossow C.F. et al. Molecular distribution of volume-regulated chloride channels (ClC-2 and ClC-3) in cardiac tissues // Am. J. Physiol. – Hear. Circ. Physiol. 2000. V. 279. № 48. P. 2225–2233. https://doi.org/10.1152/ajpheart.2000.279.5.h2225
  7. Britton F.C., Wang G.L., Huang Z.M. et al. Functional characterization of novel alternatively spliced ClC-2 chloride channel variants in the heart // J. Biol. Chem. 2005. V. 280. № 27. P. 25871–25880. https://doi.org/10.1074/jbc.M502826200
  8. Brown H.F., Giles W., Noble S.J. Membrane currents underlying activity in frog sinus venosus // J. Physiol. 1977. V. 271. № 3. P. 783–816. https://doi.org/10.1113/jphysiol.1977.sp012026
  9. Chen H., Liu L.L., Ye L.L. et al. Targeted inactivation of cystic fibrosis transmembrane conductance regulator chloride channel gene prevents ischemic preconditioning in isolated mouse heart // Circulation. 2004. V. 110. № 6. P. 700–704. https://doi.org/10.1161/01.CIR.0000138110.84758.BB
  10. Chiappe De Cingolani G., Morgan P., Mundiña-Weilenmann C. et al. Hyperactivity and altered mRNA isoform expression of the Cl-/HCO3- anion-exchanger in the hypertrophied myocardium // Cardiovasc, Res. 2001. V. 51, № 1. P. 71–79. https://doi.org/10.1016/S0008-6363(01)00276-0
  11. Cingolani H.E., Chiappe G.E., Ennis I.L. et al. Influence of Na+-Independent Cl--HCO3- Exchange on the Slow Force Response to Myocardial Stretch // Circ. Res. 2003. V. 93. № 11. P. 1082–1088. https://doi.org/10.1161/01.RES.0000102408.25664.01
  12. Cohn J.A., Nairn A.C., Marino C.R., Melhus O., Kole J. Characterization of the cystic fibrosis transmembrane conductance regulator in a colonocyte cell line // Proc. Natl. Acad. Sci. USA. 1992. V. 89. № 6. P. 2340–2344. https://doi.org/10.1073/pnas.89.6.2340
  13. Counillon L., Pouysségur J. The expanding family of eucaryotic Na+/H+ exchangers // J. of Biol. Chem. 2000. V. 275. № 1. P. 1–4. https://doi.org/10.1074/jbc.275.1.1
  14. Csanády L., Vergani P., Gadsby D.C. Structure, gating, and regulation of the CFTR anion channel // Physiol. Rev. 2019. V. 99. № 1. P. 707–738. https://doi.org/10.1152/physrev.00007.2018
  15. Cuppoletti J., Tewari K.P., Sherry A.M., Ferrante C.J., Malinowska D.H. Sites of protein kinase A activation of the human ClC-2 Cl- channel // J. Biol. Chem. 2004. V. 279. № 21. P. 21849–56. https://doi.org/10.1074/jbc.M312567200
  16. Duan D. Phenomics of cardiac chloride channels: The systematic study of chloride channel function in the heart // J. of Physiol. 2009. V. 587. P. 2163–2177. https://doi.org/10.1113/jphysiol.2008.165860
  17. Duan D., Hume J.R., Nattel S. Evidence that outwardly rectifying Cl– channels underlie volume- regulated Cl– currents in heart // Circ. Res. 1997. V. 80. № 1. P. 103–113. https://doi.org/10.1161/01.RES.80.1.103
  18. Duan D., Ye L., Britton F., Horowitz B., Hume J.R. A novel anionic inward rectifier in native cardiac myocytes. // Circ. Res. 2000. V. 86. № 4. P. 1–9. https://doi.org/10.1161/01.res.86.4.e63
  19. Duan D., Ye L., Britton F. et al. Purinoceptor-coupled Cl- channels in mouse heart: A novel, alternative pathway for CFTR regulation // J. Physiol. 1999. V. 521. № 1. P. 43–56. https://doi.org/10.1111/j.1469-7793.1999.00043.x
  20. Duan D.D. The ClC-3 chloride channels in cardiovascular disease // Acta Pharmacol. Sin. 2011. V. 32. № 6. P. 675–684. https://doi.org/10.1038/aps.2011.30
  21. Duan D.D. Phenomics of cardiac chloride channels // Compr. Physiol. 2013. V. 3. № 2. P. 667–692. https://doi.org/10.1113/jphysiol.2008.165860
  22. Duan D.Y., Liu L.L.H., Bozeat N. et al. Functional role of anion channels in cardiac diseases // Acta Pharm. Sinica. 2005. V. 26. № 3. P. 265–287. https://doi.org/10.1111/j.1745-7254.2005.00061.x
  23. Duran C., Thompson C.H., Xiao Q., Hartzell H.C. Chloride channels: Often enigmatic, rarely predictable // Annu. Rev. Physiol. 2009. V. 72. P. 95–121. https://doi.org/10.1146/annurev-physiol-021909-135811
  24. Egorov Y.V., Lang D., Tyan L. et al. Caveolae-Mediated Activation of Mechanosensitive Chloride Channels in Pulmonary Veins Triggers Atrial Arrhythmogenesis // J. Am. Heart Assoc. 2019. V. 8. № 20. P. 1–41. https://doi.org/10.1161/JAHA.119.012748
  25. Ennis I.L., Alvarez B.V., Camilión De Hurtado M.C., Cingolani H.E. Enalapril induces regression of cardiac hypertrophy and normalization of pH(i) regulatory mechanisms // Hypertension. 1998. V. 31. № 4. P. 961–967. https://doi.org/10.1161/01.HYP.31.4.961
  26. Frace A.M., Maruoka F., Noma A. Control of the hyperpolarization‐activated cation current by external anions in rabbit sino‐atrial node cells. // J. Physiol. 1992. V. 453. № 1. P. 307–318. https://doi.org/10.1113/jphysiol.1992.sp019230
  27. Fritsch J., Edelman A. Modulation of the hyperpolarization-activated Cl- current in human intestinal T84 epithelial cells by phosphorylation // J. Physiol. 1996. V. 490. № 1. P. 115–128. https://doi.org/10.1113/jphysiol.1996.sp021130
  28. Fülöp L., Fiák E., Szentandrássy N. et al. The role of transmembrane chloride current in afterdepolarisations in canine ventricular cardiomyocytes // Gen. Physiol. Biophys. 2003. V. 22. № 3. P. 341–353.
  29. Gao Z., Sun H.Y., Lau C.P., Chin-Wan Fung P., Li G.R. Evidence for cystic fibrosis transmembrane conductance regulator chloride current in swine ventricular myocytes // J Mol. Cell Cardiol. 2007. V. 42. № 1. P. 98–105. https://doi.org/10.1016/j.yjmcc.2006.10.002
  30. Han Y.E., Kwon J., Won J. et al. Tweety-homolog (Ttyh) family encodes the pore-forming subunits of the swelling-dependent volume-regulated anion channel (VRACswell) in the brain // Exp. Neurobiol. 2019. V. 28. № 2. P. 183–215. https://doi.org/10.5607/en.2019.28.2.183
  31. Hansen T.H., Yan Y., Ahlberg G. et al. A Novel Loss-of-Function Variant in the Chloride Ion Channel Gene Clcn2 Associates with Atrial Fibrillation // Sci. Rep. 2020. V. 10. № 1. P. 1–10. https://doi.org/10.1038/s41598-020-58475-9
  32. Hart P., Warth J.D., Levesque P.C. et al. Cystic fibrosis gene encodes a cAMP-dependent chloride channel in heart // Proc. Natl. Acad. Sci. USA. 1996. V. 93. № 13. P. 6343–6348. https://doi.org/10.1073/pnas.93.13.6343
  33. Hegyi B., Horváth B., Váczi K. et al. Ca2+–activated Cl− current is antiarrhythmic by reducing both spatial and temporal heterogeneity of cardiac repolarization // J. Mol. Cell. Cardiol. 2017. V. 109. P. 27–37. https://doi.org/10.1016/j.yjmcc.2017.06.014
  34. Hiraoka M., Kawano S., Hirano Y., Furukawa T. Role of cardiac chloride currents in changes in action potential characteristics and arrhythmias // Cardiovasc. Res. 1998. V. 40. № 1. P. 23–33. https://doi.org/10.1016/S0008-6363(98)00173-4
  35. Hirayama Y., Kuruma A., Hiraoka M., Kawano S. Calcium-activated Cl- current is enhanced by acidosis and contributes to the shortening of action potential duration in rabbit ventricular myocytes // Jpn. J. Physiol. 2002. V. 52. № 3. P. 293–300. https://doi.org/10.2170/jjphysiol.52.293
  36. Horváth B., Váczi K., Hegyi B. et al. Sarcolemmal Ca2+-entry through L-type Ca2+ channels controls the profile of Ca2+-activated Cl– current in canine ventricular myocytes // J. Mol. Cell Cardiol. 2016. V. 97. P. 125–139. https://doi.org/10.1016/j.yjmcc.2016.05.006
  37. Huang Z.M., Prasad C., Britton F.C. et al. Functional role of CLC-2 chloride inward rectifier channels in cardiac sinoatrial nodal pacemaker cells // J. Mol. Cell Cardiol. 2009. V. 47. № 1. P. 121–132. https://doi.org/10.1016/j.yjmcc.2009.04.008
  38. Hume J.R., Duan D., Collier M.L., Yamazaki J., Horowitz B. Anion transport in heart // Physiol. Rev. 2000. V. 80. № 1. P. 31–81. https://doi.org/10.1152/physrev.2000.80.1.31
  39. Hume J.R., Hart P., Levesque P.C. et al. Molecular physiology of CFTR Cl– channels in heart // Jpn. J. Physiol. 1994. V. 44. № 2.
  40. Hutter O.F., Noble D. Anion conductance of cardiac muscle // J. Physiol. 1961. V. 157. № 2. P. 335–350. https://doi.org/10.1113/jphysiol.1961.sp006726
  41. James A.F. Enigmatic variations: The many facets of CFTR function in the heart // Acta Physiol. 2020. V. 230. № 1. P. 5–6. https://doi.org/10.1111/apha.13525
  42. January C.T., Fozzard H.A. Delayed afterdepolarizations in heart muscle: Mechanisms and relevance // Pharmacol. Rev. 1988. V. 40. № 3.
  43. Jentsch T.J., Pusch M. CLC chloride channels and transporters: Structure, function, physiology, and disease // Physiol. Rev. 2018. V. 98. № 3. P. 1493–1590. https://doi.org/10.1152/physrev.00047.2017
  44. Jeulin C., Guadagnini R., Marano F. Oxidant stress stimulates Ca2+-activated chloride channels in the apical activated membrane of cultured nonciliated human nasal epithelial cells // Am. J. Physiol. – Lung Cell Mol. Physiol. 2005. V. 289. № 33. P. 636–646. https://doi.org/10.1152/ajplung.00351.2004
  45. Jiang K., Jiao S., Vitko M. et al. The impact of Cystic Fibrosis Transmembrane Regulator Disruption on cardiac function and stress response // J. Cyst. Fibros. 2016. V. 15. № 1. P. 34–42. https://doi.org/10.1016/j.jcf.2015.06.003
  46. Jin X., Shah S., Liu Y. et al. Activation of the Cl– Channel ANO1 by localized calcium signals in nociceptive sensory neurons requires coupling with the IP3 receptor // Sci. Signal. 2013. V. 6. № 290. https://doi.org/10.1126/scisignal.2004184
  47. Kim H.J., Myers R., Sihn C.R. et al. Slc26a6 functions as an electrogenic Cl/HCO3 exchanger in cardiac myocytes // Cardiovasc. Res. 2013. V. 100. № 3. P. 383–391. https://doi.org/10.1093/cvr/cvt195
  48. Komukai K., Brette F., Orchard C.H. Electrophysiological response of rat atrial myocytes to acidosis // Am. J. Physiol. – Hear. Circ. Physiol. 2002. V. 283. № 52–2. P. 715–724. https://doi.org/10.1152/ajpheart.01000.2001
  49. Kunzelmann K. CFTR: Interacting with everything? // News Physiol. Sci. 2001. V. 16. № 4. P. 167–170. https://doi.org/10.1152/physiologyonline.2001.16.4.167
  50. Kuzumoto M., Takeuchi A., Nakai H. et al. Simulation analysis of intracellular Na+ and Cl–homeostasis during β1-adrenergic stimulation of cardiac myocyte // Prog. Biophys. Mol. Biol. 2008. V. 96. № 1–3. P. 171–186. https://doi.org/10.1016/j.pbiomolbio.2007.07.005
  51. Lader A.S., Wang Y., Jackson G.R., Borkan S.C., Cantiello H.F. cAMP-activated anion conductance is associated with expression of CFTR in neonatal mouse cardiac myocytes // Am. J. Physiol. – Cell Physiol. 2000. V. 278. № 47–2. P. 436–440. https://doi.org/10.1152/ajpcell.2000.278.2.c436
  52. Lai Z.F., Nishi K. Intracellular chloride activity increases in guinea pig ventricular muscle during simulated ischemia // Am. J. Physiol. – Hear. Circ. Physiol. 1998. V. 44. № 5. P. 1613–1619. https://doi.org/10.1152/ajpheart.1998.275.5.h1613
  53. Leem C.H., Lagadic-Gossmann D., Vaughan-Jones R.D. Characterization of intracellular pH regulation in the guinea-pig ventricular myocyte // J. Physiol. 1999. V. 517. № 1. P. 159–180. https://doi.org/10.1111/j.1469-7793.1999.0159z.x
  54. Li B., Hoel C.M., Brohawn S.G. Structures of tweety homolog proteins TTYH2 and TTYH3 reveal a Ca2+-dependent switch from intra- to intermembrane dimerization // Nat. Commun. 2021. V. 12. № 1. P. 1–9. https://doi.org/10.1038/s41467-021-27283-8
  55. Li C., Huang D., Tang J. et al. ClC-3 chloride channel is involved in isoprenaline-induced cardiac hypertrophy // Gene. 2018. V. 642. P. 335–342. https://doi.org/10.1016/j.gene.2017.11.045
  56. Litviňuková M., Talavera-López C., Maatz H. et al. Cells of the adult human heart // Nature. 2020. V. 588. № 7838. P. 466–472. https://doi.org/10.1038/s41586-020-2797-4
  57. Meor Azlan N.F., Zhang J. Role of the Cation-Chloride-Cotransporters in Cardiovascular Disease // Cells. 2020. V. 9. № 10. P. 1–21. https://doi.org/10.3390/cells9102293
  58. Miller A.N., Vaisey G., Long S.B. Molecular mechanisms of gating in the calcium-activated chloride channel bestrophin // Elife. 2019. V. 8. P. 1–17. https://doi.org/10.7554/eLife.43231
  59. Modi A.D., Khan A.N., Cheng W.Y.E., Modi D.M. KCCs, NKCCs, and NCC: Potential targets for cardiovascular therapeutics? A comprehensive review of cell and region specific expression and function // Acta Histochem. 2023. V. 125. № 4. https://doi.org/10.1016/j.acthis.2023.152045
  60. Okada Y., Sabirov R.Z., Merzlyak P.G., Numata T., Sato-Numata K. Properties, Structures, and Physiological Roles of Three Types of Anion Channels Molecularly Identified in the 2010’s // Front. Physiol. 2021. V. 12. P. 1–12. https://doi.org/10.3389/fphys.2021.805148
  61. Orlov S.N., Koltsova S.V., Kapilevich L.V., Dulin N.O., Gusakova S.V. Cation-chloride cotransporters: Regulation, physiological significance, and role in pathogenesis of arterial hypertension // Biochem. 2014. V. 79. № 13. P. 1546–1561. https://doi.org/10.1134/S0006297914130070
  62. Owji A.P., Kittredge A., Zhang Y., Yang T. Structure and Function of the Bestrophin family of calcium-activated chloride channels // Channels. 2021. V. 15. № 1. 604–623. https://doi.org/10.1080/19336950.2021.1981625
  63. Prasad V., Bodi I., Meyer J.W. et al. Impaired cardiac contractility in mice lacking both the AE3 Cl–/HCO3– exchanger and the NKCC1 Na +–K+–2Cl– cotransporter: Effects on Ca 2+ handling and protein phosphatases // J. Biol Chem. 2008. V. 283. № 46. https://doi.org/10.1074/jbc.M803706200
  64. Ruiz Petrich E., Ponce Zumino A., Schanne O.F. Early action potential shortening in hypoxic hearts: Role of chloride current(s) mediated by catecholamine release // J. Mol. Cell Cardiol. 1996. V. 28. № 2. P. 279–290. https://doi.org/10.1006/jmcc.1996.0026
  65. Scherer C., Linz W., Busch A., Steinmeyer K. Gene expression profiles of CLC chloride channels in animal models with different cardiovascular diseases // Cell Physiol. Biochem. 2001. V. 11. № 6. P. 321–330. https://doi.org/10.1159/000047818
  66. Sellers Z.M., De Arcangelis V., Xiang Y., Best P.M. Cardiomyocytes with disrupted CFTR function require CaMKII and Ca2+-activated Cl- channel activity to maintain contraction rate // J. Physiol. 2010. V. 588. № 13. P. 2417–2429. https://doi.org/10.1113/jphysiol.2010.188334
  67. Seyama I. Characteristics of the anion channel in the sino‐atrial node cell of the rabbit. // J. Physiol. 1979. V. 294. № 1. P. 447–460. https://doi.org/10.1113/jphysiol.1979.sp012940
  68. Sherry A.M., Stroffekova K., Knapp L.M. et al. Characterization of the human pH- and PKA-activated CIC-2G(2α) Cl– channel // Am. J. Physiol. – Cell Physiol. 1997. V. 273. № 42–2. P. 384–393. https://doi.org/10.1152/ajpcell.1997.273.2.c384
  69. Szigeti G., Rusznák Z., Kovács L., Papp Z. Calcium-activated transient membrane currents are carried mainly by chloride ions in isolated atrial, ventricular and Purkinje cells of rabbit heart // Exp. Physiol. 1998. V. 83. № 2. P. 137–153. https://doi.org/10.1113/expphysiol.1998.sp004097
  70. Takagi D., Okamoto Y., Ohba T., Yamamoto H., Ono K. Comparative study of hyperpolarization-activated currents in pulmonary vein cardiomyocytes isolated from rat, guinea pig, and rabbit // J. Physiol. Sci. 2020. V. 70. № 1. P. 1–20. https://doi.org/10.1186/s12576-020-00736-3
  71. Tilly B.C., Bezstarosti K., Boomaars W.E.M. et al. Expression and regulation of chloride channels in neonatal rat cardiomyocytes // Mol. Cell Biochem. 1996. V. 157. № 1–2. P. 129–135. https://doi.org/10.1007/bf00227891
  72. Uramoto H., Takahashi N., Dutta A.K. et al. Ischemia-Induced Enhancement of CFTR Expression on the Plasma Membrane in Neonatal Rat Ventricular Myocytes // Jpn. J. Physiol. 2003. V. 53. № 5. P. 357–365. https://doi.org/10.2170/jjphysiol.53.357
  73. Valverde C.A., Kornyeyev D., Ferreiro M. et al. Transient Ca2+ depletion of the sarcoplasmic reticulum at the onset of reperfusion // Cardiovasc. Res. 2010. V. 85. № 4. P. 671–680. https://doi.org/10.1093/cvr/cvp371
  74. Vandenberg J.I., Bett G.C.L., Powell T. Contribution of a swelling-activated chloride current to changes in the cardiac action potential // Am. J. Physiol. – Cell Physiol. 1997. V. 273. № 42–2. P. 541–547. https://doi.org/10.1152/ajpcell.1997.273.2.c541
  75. Voronina Y.A., Fedorov A.V., Chelombitko M.A., Piunova U.E., Kuzmin V.S. α1-Adrenergic Receptors Control the Activity of Sinoatrial Node by Modulating Transmembrane Transport of Chloride Anions // Biochem. Suppl. Ser. A Membr. Cell Biol. 2023. V. 17. № 4. P. 39–50. https://doi.org/10.1134/S1990747823070061
  76. Wang H.S. Critical role of bicarbonate and bicarbonate transporters in cardiac function // World J. Biol. Chem. 2014. V. 5. № 3. P. 334. https://doi.org/10.4331/wjbc.v5.i3.334
  77. Wang J., Wang W., Wang H., Tuo B. Physiological and Pathological Functions of SLC26A6 // Front. Med. 2020. V. 7. P. 1–13. https://doi.org/10.3389/fmed.2020.618256
  78. Warth J.D., Collier M.L., Hart P. et al. CFTR chloride channels in human and simian heart // Cardiovasc Res. 1996. V. 31. № 4. P. 615–624. https://doi.org/10.1016/0008-6363(95)00245-6
  79. Xiang S.Y., Ye L.L., Duan L.L.M. et al. Characterization of a critical role for CFTR chloride channels in cardioprotection against ischemia/reperfusion injury // Acta Pharmacol Sin. 2011. V. 32. № 6. P. 824–833. https://doi.org/10.1038/aps.2011.61
  80. Xiong D., Heyman N.S., Airey J. et al. Cardiac-specific, inducible ClC-3 gene deletion eliminates native volume-sensitive chloride channels and produces myocardial hypertrophy in adult mice // J. Mol. Cell Cardiol. 2010. V. 48. № 1. P. 211–219. https://doi.org/10.1016/j.yjmcc.2009.07.003
  81. Xu Y., Dong P.H., Zhang Z., Ahmmed G.U., Chiamvimonvat N. Presence of a calcium-activated chloride current in mouse ventricular myocytes // Am. J. Physiol. – Hear. Circ. Physiol. 2002. V. 283. № 52–1. P. 302–314. https://doi.org/10.1152/ajpheart.00044.2002
  82. Ye Z., Wu M.M., Wang C.Y. et al. Characterization of cardiac anoctamin1 Ca2+-activated chloride channels and functional role in ischemia-induced arrhythmias // J. Cell Physiol. 2015. V. 230. № 2. P. 337–346. https://doi.org/10.1002/jcp.24709
  83. Yu Y., Ye L., Li Y.G., Burkin D.J., Duan D.D. Heart-specific overexpression of the human short CLC-3 chloride channel isoform limits myocardial ischemia-induced ERP and QT prolongation // Int. J. Cardiol. 2016. V. 214. P. 218–224. https://doi.org/10.1016/j.ijcard.2016.03.191
  84. Zygmunt A.C. Intracellular calcium activates a chloride current in canine ventricular myocytes // Am. J. Physiol. – Hear. Circ. Physiol. 1994. V. 267. № 36–5. P. 1984–1995. https://doi.org/10.1152/ajpheart.1994.267.5.h1984
  85. Zygmunt A.C., Gibbons W.R. Calcium-activated chloride current in rabbit ventricular myocytes // Circ Res. 1991. V. 68. № 2. P. 424–437. https://doi.org/10.1113/expphysiol.1998.sp004097
  86. Zygmunt A.C., Gibbons W.R. Properties of the calcium-activated chloride current in heart // J. Gen Physiol. 1992. V. 99. № 3. P. 391–414. https://doi.org/10.1085/jgp.99.3.391
  87. Zygmunt A.C., Goodrow R.J., Weigel C.M. et al. INaCa and ICl(Ca) contribute to isoproterenol-induced delayed afterdepolarizations in midmyocardial cells INaCa and ICl(Ca) contribute to isoproterenol-induced delayed afterdepolarizations in midmyocardial cells // Am. J. Physiol. 2013. V. 275. № 6. P. 1979–1992.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The range of values ​​of the equilibrium potential for chlorine (ECl–) in cardiomyocytes. The extracellular concentration of chlorine ([Cl–]o) is 125 mM. a – dependence of ECl– on [Cl–]i. The yellow part of the dotted curve denotes the physiological range of possible [Cl–]i and ECl in cardiomyocytes of different parts of the heart, the red and green parts of the dotted curve – possible values ​​of [Cl–]i and ECl in cardiomyocytes under hypotonic and hypertonic stress; b – action potential in cardiomyocytes of the contractile (working) myocardium. The area marked in red is the range of ECl– changes depending on [Cl–]i; c – action potential in cardiomyocytes of the sinoatrial node with pacemaker activity. The black and gray triangles are the MP values, up to which the incoming depolarizing component of ICl takes place (at a given value of [Cl–]i). ICl, in, dep – depolarizing incoming chloride current, MP – membrane potential.

Download (155KB)
3. Fig. 2. Upper panels: changes in the configuration of the action potential of cardiomyocytes of the working (left) and pacemaker (right) myocardium upon activation of chloride channels. Black: action potential in the control, red: action potential upon activation of different types of chloride channels: CFTR (a–b), LRRC8x (a–b), ClC-2 (c–d), TMEM16A (d–f). Lower panels: changes in the chloride current through different chloride channels depending on the membrane potential during the action potential of cardiomyocytes of the working (left) and pacemaker (right) myocardium: CFTR (a–b), LRRC8x (a–b), ClC-2 (c–d), TMEM16A (d–f). Green: inward current (chlorine ions leave the cell), blue: outward current (chlorine ions enter the cell). In panel b, the inward and outward components of the current are shown for three values ​​of [Cl–]i, since this value may differ between the central and peripheral parts of the heterogeneous SAN tissue, causing different electrophysiological effects. The curves are constructed using the Goldman–Hodgkin–Katz (GKH) equation for the transmembrane ion current and taking into account the probability of the channel being in the open state.

Download (440KB)
4. Fig. 3. Properties of the calcium-dependent chloride current Ito,2 of the TMEM16A (Ano1) channel: a – current-voltage characteristic of Ito,2 at different stimulation frequencies (0.1–2.5 Hz). Given with modifications from Wang Zh. et al., Am. J. Physiol., 268, No. 1992–H2002, 1995; b – original recordings of Ito,2 with a stepwise protocol of changing the maintained potential from –20 to +60 mV. Given with modifications from Li G-R et al., Am. J. Physiol., 269, No. 463–H472, 1995; c – interaction of the calcium-dependent chloride channel TMEM16A (ANO1), which is a molecular substrate of Ito,2, with various proteins. ANO1 – calcium-dependent chloride channel TMEM16A, CLCA1, CLCA2, CLCA4 – regulatory subunits of chloride channels, BEST1, BEST2, BEST3 – bestrophins 1–3, CFTR – cystic fibrosis transmembrane regulator, SLC26A6 – chloride-bicarbonate exchanger, TTYH3 – tweety family protein; g – representative examples of spontaneous “calcium waves” recorded in isolated cardiomyocytes. Top – Fluo-4 fluorescence curves obtained by averaging the values ​​along a 5 μm scan line, bottom – pseudo-images reflecting the change in fluorescence level over time (over 300 ms) along the scan line (horizontal axis – time, vertical axis – scan line).

Download (470KB)
5. Fig. 4. Electrical characteristics of chlorine-cation cotransporters: a – dependence of electromotive force (EMF) on membrane potential (MP) for potassium, chlorine ions and cotransporter KCC; b – dependence of electromotive force (EMF) on membrane potential (MP) for sodium, potassium, chlorine ions and cotransporter NKCC; c – current-voltage characteristic of potassium and chlorine currents, as well as total current of cotransporter KCC; d – current-voltage characteristic of sodium, potassium and chlorine currents, as well as total current of cotransporter NKCC.

Download (372KB)
6. Fig. 5. Effects of activation of chloride-cation cotransporters on the electrical activity of the working myocardium: a – change in the configuration of the action potential of the cardiomyocyte of the working myocardium upon activation of the cotransporter of chloride and potassium ions KCC (red, taking into account the activity of KCC) compared to the control (black, excluding the activity of KCC); b – change in the configuration of the action potential of the cardiomyocyte of the working myocardium upon activation of the cotransporter of chloride and potassium ions NKCC (red, taking into account the activity of NKCC) compared to the control (black, excluding the activity of NKCC); c – change in the intensity of the flow of chloride ions through the cotransporters KCC and NKCC depending on the membrane potential.

Download (168KB)

Copyright (c) 2024 Russian Academy of Sciences