Brain response to sound motion-onset in human

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This review comprehensively examines the features of the motion-specific brain response produced by human hearing system, the so-called motion-onset response (MOR). We discuss the interpretations of this component of auditory evoked potentials, its dependence on velocity and direction of sound motion and on various spatial characteristics of sound stimuli. We review the studies of event-related oscillations underlying the MOR which have shown that gradual sound motion causes the phase alignment of the delta-alpha range to the motion onset. We also consider the influence of audio-visual integration on motion processing. The MOR component as a correlate of the processes of spatial integration can provide new information about an early pre-conscious activation of brain structures that facilitates orientation and adaptation of a person to a changing acoustic environment.

Full Text

Restricted Access

About the authors

L. B. Shestopalova

Pavlov Institute of Physiology, Russian Academy of Sciences

Author for correspondence.
Email: shestopalovalb@infran.ru
Russian Federation, 199034, St. Petersburg

V. V. Semenova

Pavlov Institute of Physiology, Russian Academy of Sciences

Email: shestopalovalb@infran.ru
Russian Federation, 199034, St. Petersburg

E. A. Petropavlovskaia

Pavlov Institute of Physiology, Russian Academy of Sciences

Email: shestopalovalb@infran.ru
Russian Federation, 199034, St. Petersburg

References

  1. Альтман Я.А. Локализация движущегося источника звука. Л.: Наука, 1983. 176 с.
  2. Альтман Я.А. Пространственный слух. СПб.: Институт физиологии им. И.П. Павлова РАН, 2011. 311 с.
  3. Варфоломеев А.Л., Старостина Л.В. Слуховые вызванные потенциалы человека при иллюзорном движении звукового образа // Российский физиологический журнал им.Сеченова. 2006. Т. 92. № 9. С. 1046–1057.
  4. Петропавловская Е.А., Шестопалова Л.Б., Вайтулевич С.Ф. Проявления инерционности слуховой системы при локализации движущихся звуковых образов малой длительности // Физиология человека. 2010. Т. 36. № 4. С. 1–10.
  5. Семенова В.В. Окно интеграции про-странственной слуховой информации у человека: электрофизиологические и психофизические аспекты восприятия: дис. ... канд. биол. наук. СПб.: Институт физиологии им. И.П. Павлова РАН, 2022. 118 с.
  6. Семенова В.В., Шестопалова Л.Б., Петропавловская Е.А., Никитин Н.И. Константы восприятия отсроченного движения звуковых стимулов // Успехи физиологических наук. 2020. Т. 51. № 2. С. 55–67. https://doi.org/10.31857/S0301179820020095
  7. Семенова В.В., Шестопалова Л.Б., Петропавловская Е.А., Саликова Д.А., Никитин Н.И. Латентность вызванного потенциала как показатель интегрирования акустической информации о движении звука // Физиология человека. 2022. Т.48. № 4. С. 57–68. https://doi.org/10.31857/S0131164622040105
  8. Шестопалова Л.Б., Петропавловская Е.А., Семенова В.В., Никитин Н.И. Вызванные потенциалы на звуковые стимулы с отсроченным началом движения в условиях активного и пассивного прослушивания // Журнал высшей нервной деятельности. 2016. Т. 66. № 5. С. 565–578. https://doi.org/10.7868/S0044467716050099
  9. Шестопалова Л.Б., Петропавловская Е.А., Семенова В.В., Никитин Н.И. Ритмическая активность мозга человека, связанная с движением звуковых стимулов // ЖВНД. 2020. Т. 70. № 5. С. 616–634. https://doi.org/10.31857/S0044467720050111.
  10. Ahissar M., Ahissar E., Bregman H., Vaadia E. Encoding of sound-source location and movement: Activity of single neurons and interactions between adjacent neurons in the monkey auditory cortex // Journal of Neurophysiology. 1992. V. 67. P. 203–215. https://doi.org/ 10.1152/jn.1992.67.1.203
  11. Altman J.A. Are there neurons detecting direction of sound source motion? // Experimental Neurology. 1968. V. 22. P. 13–25. https://doi.org/10.1016/0014-4886(68)90016-2
  12. Altman, J.A., Vaitulevich S.Ph. Auditory image movement in evoked potentials // Electroencephalography and Clinical Neurophysiology. 1990. V. 75. № 4. P. 323–333. https://doi.org/10.1016/0013-4694(90)90110-6
  13. Altman J.A., Viskov O.V. Discrimination of perceived movement velocity for fused auditory image in dichotic stimulation // The Journal of the Acoustical Society of America. 1977. V. 61. № 3. P. 816–819. https://doi.org/10.1016/0013-4694(90)90110-6
  14. Altmann C.F., Ueda R., Bucher B. et. al. Trading of dynamic interaural time and level difference cues and its effect on the auditory motion-onset response measured with electroencephalography // NeuroImage. 2017. V. 159. P. 185–194. https://doi.org/10.1016/j.neuroimage.2017.07.055
  15. Arnal L.H., Giraud A.L. Cortical oscillations and sensory predictions // Trends Cogn. Sci. 2012. V. 16. № 7. P. 390–398. https://doi.org/10.1016/j.tics.2012.05.003
  16. Bach M., Ullrich D. Motion adaptation governs the shape of motion-evoked cortical potentials // Vision Res. 1994. V. 34. P. 1541–1547. https://doi.org/10.1016/0042-6989(94)90111-2
  17. Barrett D.J.K., Hall D.A. Response preferences for “what” and “where” in human non-primary auditory cortex // Neuroimage. 2006. V. 32. P. 968–977. https://doi.org/10.1016/j.neuroimage.2006.03.050
  18. Baumgart F., Gaschler-Markefski B., Woldorff M.G., Heinze H.J., Schleich H. A movement-sensitive area in auditory cortex // Nature. 1999. V. 400. P. 724–726. https://doi.org/10.1038/23390
  19. Beer A.L., Röder B. Attending to visual or auditory motion affects perception within and across modalities: an event-related potential study // Eur J Neurosci. 2005. V. 21. № 4. P. 1116–30. https://doi.org/10.1111/j.1460-9568.2005.03927.x
  20. Bidet-Caulet A., Bertrand O. Dynamics of a temporo-fronto-parietal network during sustained spatial or spectral auditory processing // Journal of Cognitive Neuroscience. 2005. V. 17. № 11. P. 1691–1703. https://doi.org/10.1162/089892905774589244
  21. Bremmer F., Schlack A., Shah N.J. et al. Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys // Neuron. 2001. V. 29. № 1. P. 287–296. https://doi.org/10.1016/s0896-6273(01)00198-2
  22. Briley P.M., Kitterick P.T., Summerfield A.Q. Evidence for Opponent Process Analysis of Sound Source Location in Humans // J. Assoc. Res. Otolaryngol. 2013. V. 14. № 1. P. 83–101. https://doi.org/10.1007/s10162-012-0356-x
  23. Brunetti M., Belardinelli P., Caulo M. et al. Human brain activation during passive listening to sounds from different locations: an fMRI and MEG study // Hum. Brain Mapp. V. 2005. № 26. P. 251–261. https://doi.org/10.1002/hbm.20164
  24. Carlile S., Best V. Discrimination of sound source velocity by human listeners // The Journal of the Acoustical Society of America. 2002. V. 111. № 26. P. 1026–1035. https://doi.org/10.1121/1.1436067
  25. Carlile S., Leung J. The perception of Auditory motion // Trends in Hearing. 2016. V. 20. P. 1–19. https://doi.org/10.1177/2331216516644254
  26. Chandler D.W., Grantham D.W. Minimum audible movement angle in the horizontal plane as a function of stimulus frequency and bandwidth, source azimuth, and velocity // The Journal of Acoustical Society of America. 1992. V. 91. № 3. P. 1624–1636. https://doi.org/10.1121/1.402443
  27. Chaplin T.A., Rosa M.G.P., Lui L.L. Auditory and Visual Motion Processing and Integration in the Primate Cerebral Cortex // Front. Neural Circuits. 2018. V. 12. № 93. https://doi.org/10.3389/fncir.2018.00093
  28. Deouell L.Y., Bentin S., Giard M.H. Mismatch negativity in dichotic listening: evidence for interhemispheric differences and multiple generators // Psychophysiology. 1998. V. 35. P. 355–365.
  29. Dietz M.J., Friston K.J., Mattingley J.B., Roepstorff A., Garrido M.I. Effective connectivity reveals right-hemisphere dominance in audiospatial perception: implications for models of spatial neglect // J. Neurosci. 2014. V. 34. № 14. P. 5003–5011. https://doi org/10.1523%2FJNEUROSCI.3765-13.2014
  30. Ducommun C.Y., Murray M.M., Thut G. et al. Segregated processing of auditory motion and auditory location: an ERP mapping study // NeuroImage. 2002. V. 16. P. 76–88. https://doi.org/10.1006/nimg.2002.1062
  31. Fan Z.-T., Zhao Z.-H., Sharma M. et. al. Acoustic change complex evoked by horizontal sound location change in young adults with normal hearing // Frontiers in Neuroscience. 2022. V. 16. № 908989. https://doi.org/10.3389/fnins.2022.908989
  32. Freeman C. A., Leung J., Wufong E. et. al. Discrimination Contours for Moving Sounds Reveal Duration and Distance Cues Dominate Auditory Speed Perception // PLoS ONE. V. 9. № 7. e102864. https://doi.org/10.1371/journal.pone.0102864
  33. Getzmann S. Effects of velocity and motion-onset delay on detection and discrimination of sound motion // Hearing Research. 2008. V. 246. P. 44–51. https://doi.org/10.1016/j.heares.2008.09.007
  34. Getzmann S. Effect of auditory motion velocity on reaction time and cortical processes // Neuropsychologia. 2009. V. 47. P. 2625–2633.
  35. Getzmann S. Auditory motion perception: onset position and motion direction are encoded in discrete processing stages // European Journal of Neuroscience. 2011. V. 33. P. 1339–1350. https://doi.org/10.1111/j.1460-9568.2011.07617.x
  36. Getzmann S., Lewald J., Guski R. Representational momentum in spatial hearing // Perception. 2004. V. 33. P. 591–600. https://doi.org/10.1068/p5093
  37. Getzmann S., Lewald J. Effects of natural versus artificial spatial cues on electrophysiological correlates of auditory motion // Hearing Research. 2010a. V. 259. P. 44–54. https://doi.org/10.1016/j.heares.2009.09.021
  38. Getzmann S., Lewald J. Shared cortical systems for processing of horizontal and vertical sound motion // J. Neurophysiol. 2010b. V. 103. P. 1896–1904. http://dx.doi.org/10.1152/jn.00333.2009
  39. Getzmann S., Lewald J. The effect of spatial adaptation on auditory motion processing // Hearing Research. 2011. V. 272. № 1–2. P. 21–29. https://doi.org/10.1016/j.heares.2010.11.005
  40. Getzmann S., Lewald J. Cortical processing of change in sound location: Smooth motion versus discontinuous displacement // Brain Research. 2012. V. 1466. P. 119–127. https://doi.org/10.1016/j.brainres.2012.05.033
  41. Getzmann S., Lewald J. Modulation of Auditory Motion Processing by Visual Motion // Journal of Psychophysiology. 2014. V. 28. P. 82–100. https://doi.org/10.1027/0269-8803/a000113
  42. Grantham D.W. Detection and discrimination of simulated motion of auditory targets in the horizontal plane // The Journal of the Acoustical Society of America. 1986. V. 79. № 6. P. 1939–1949. https://doi.org/10.1121/1.393201
  43. Grantham D.W. Auditory motion perception: Snapshots revisited // Binaural and spatial hearing in real and virtual environments / Eds. R.H. Gilkey, T.R. Anderson. Mahwah, NJ: Lawrence Erlbaum Associates, 1997. P. 295–313.
  44. Griffiths T.D., Bench C.J., Frackowiak R.S.J. Human cortical areas selectively activated by apparent sound motion // Current Biology. 1994. V. 4. P. 892–895. https://doi.org/10.1016/s0960-9822(00)00198-6
  45. Griffiths T.D., Green G.G., Rees A., Rees G. Human brain areas involved in the analysis of auditory movement // Human Brain Mapping. 2000. V. 9. P. 72–80. https://doi.org/10.1002/(sici)1097-0193(200002)9:2%3C72::aid-hbm2%3E3.0.co;2-9
  46. Griffiths T.D., Rees G., Rees A. et al. Right parietal cortex is involved in the perception of sound movement in humans // Nature Neuroscience. 1998. V. 1. P. 74–79. https://doi.org/10.1038/276
  47. Grzeschik R., Böckmann-Barthel M., Mühler R., Hoffmann M.B. Motion-onset auditory-evoked potentials critically depend on history // Experimental Brain Research. 2010. V. 203. P. 159–168. https://doi.org/10.1007/s00221-010-2221-7
  48. Grzeschik R., Böckmann-Barthel M., Mühler R., Verhey J.L., Hoffmann, M.B. Direction-specific adaptation of motion-onset auditory evoked potentials // European Journal of Neuroscience. 2013. V. 38. P. 2557–2565. https://doi.org/10.1111/ejn.12264
  49. Grzeschik R., Lewald J., Verhey J.L., Hoffmann M.B., Getzmann S. Absence of direction-specific cross-modal visual-auditory adaptation in motion-onset ERPs // European Journal of Neuroscience. 2016. V. 43. № 1. P. 66–77. https://doi.org/10.1111/ejn.13102
  50. Haegens S., Golumbic E.Z. Rhythmic facilitation of sensory processing: A critical review // Neurosci. Biobehav. Rev. 2018. V. 86, P. 150–165. https://doi.org/10.1016/j.neubiorev.2017.12.002.
  51. Hall D.A., Hart H.C., Johnsrude I.S. Relationships between human auditory cortical structure and function // Audiology and Neuro-Otology. 2003. V. 8. № 1. P. 1–18. https://doi.org/10.1159/000067894
  52. Harris J.D., & Sergeant R.L. Monaural-binaural minimum audible angles for a moving sound source // Journal of Speech and Hearing Research. 1971. V. 14. P. 618–629. https://doi.org/10.1044/jshr.1403.618
  53. Heinrich S.P. A primer on motion visual evoked potentials // Documenta Ophthalmologica. 2007. V. 114. P. 83–105. https://doi.org/10.1007/s10633-006-9043-8
  54. Herrmann C.S., Grigutsch M., Busch N.A. EEG oscillations and wavelet analysis // Event-related potentials: а methods handbook / Ed. T.C. Handy. Cambridge, London: MIT Press, 2005. P. 229–259.
  55. Huang S., Chang W.-T., Belliveau J.W., Hämäläinen M., Ahveninen J. Lateralized parietotemporal oscillatory phase synchronization during auditory selective attention // Neuroimage. 2014. V. 86. P. 461–469. https://doi.org/10.1016/j.neuroimage.2013.10.043
  56. Jerger J., Estes R. Asymmetry in event-related potentials to simulated auditory motion in children, young adults, and seniors // Journal of the American Academy of Audiology. 2002. V. 13. № 1. P. 1–13.
  57. Kaiser J., Lutzenberger W., Preissl H., Ackermann H., Birbaumer N. Right-hemisphere dominance for the processing of sound-source lateralization // J. Neurosci. 2000. V. 20. P. 6631–6639. https://doi.org/10.1523/JNEUROSCI.20-17-06631.2000
  58. Kaya U., Kafaligonul H. Audiovisual interactions in speeded discrimination of a visual event // Psychophysiology. 2021. V. 58. № 4. e13777. https://doi.org/10.1111/psyp.13777
  59. Kaya U., Yildirim F.Z., Kafaligonul H. The involvement of centralized and distributed processes in sub-second time interval adaptation: an ERP investigation of apparent motion // EJN. 2017. V. 46. № 8. P. 2325–2338. https://doi.org/10.1111/ejn.13691.
  60. Kayser C., Petkov C.I., Remedios R., Logothetis N.K. Multisensory Influences on Auditory Processing: Perspectives from fMRI and Electrophysiology // The Neural Bases of Multisensory processes / Eds. M.M. Murray, M.T. Wallace. Boca Raton, London, N.Y.: CRC press, 2012. P. 99–114.
  61. Klimesch W., Sauseng P., Hanslmayr S., Gruber W., Freunberger R. Event-related phase reorganization may explain evoked neural dynamics // Neurosci. Biobehav. Rev. 2007. V. 31. P. 1003–1016. http://doi.org/10.1016/j.neubiorev.2007.03.005.
  62. Koelewijn T., Bronkhorst A., Theeuwes J. Attention and the multiple stages of multisensory integration: A review of audiovisual studies // Acta Psychologica. 2010. V. 134. P. 372–384. https://doi.org/10.1016/j.actpsy.2010.03.010
  63. Kreegipuu К., Allik J. Detection of motion onset and offset: reaction time and visual evoked potential analysis // Psychological Research. 2007. V. 71. № 6. P. 703–708. https://doi.org/10.1007/s00426-006-0059-1
  64. Kreitewolf J., Lewald J., Getzmann S. Effect of attention on cortical processing of sound motion: An EEG study // NeuroImage. 2011. V. 54. P. 2340–2349. https://doi.org/10.1016/j.neuroimage.2010.10.031
  65. Krumbholz K., Schönwiesner M., Rübsamen R. et.al. Hierarchical processing of sound location and motion in the human brainstem and planum temporale // Eur. J. Neurosci. 2005. V. 21. P. 230–238. https://doi.org/10.1111/j.1460-9568.2004.03836.x
  66. Krumbholz K., Schönwiesner M., von Cramon D.Y. et.al. Representation of interaural temporal information from left and right auditory space in the human planum temporale and inferior parietal lobe // Cerebral Cortex. 2005. V. 15. P. 317–324. https://doi.org/10.1093/cercor/bhh133
  67. Krumbholz K., Hewson-Stoate N., Schönwiesner M. Cortical response to auditory motion suggests an asymmetry in the reliance on inter-hemispheric connections between the left and right auditory cortices // J. Neurophysiol. 2007. V. 97. P. 1649–1655. https://doi.org/10.1152/jn.00560.2006
  68. Lewis J.W., Beauchamp M.S., DeYoe E.A. A comparison of visual and auditory motion processing in human cerebral cortex // Cerebral Cortex. 2000. V. 10. № 9. P. 873–88. https://doi.org/10.1093/cercor/10.9.873
  69. Locke S.M., Leung J., Carlile S. Sensitivity to Auditory Velocity Contrast // Scientific Reports. 2016. V. 6. № 27725. https://doi.org/10.1038/srep27725.
  70. López-Moliner J., Soto-Faraco S. Vision affects how fast we hear sounds move // Journal of Vision. 2007. V. 7. № 12. P. 1–7. https://doi.org/10.1167/7.12.6
  71. Magezi D.A., Krumbholz K. Evidence for opponent channel coding of interaural time differences in human auditory cortex // J. Neurophysiol. 2010. V. 104. № 4. P. 1997–2007. https://doi.org/10.1152/jn.00424.2009
  72. Makeig S., Debener S., Onton J., Delorme A. Mining event-related brain dynamics // Trends Cogn. Sci. 2004. V. 8. № 5. P. 204–210. http://doi.org/10.1016/j.tics.2004.03.008
  73. Makeig S., Westerfield M., Jung T.-P. et al. Dynamic brain sources of visual evoked responses // Science. 2002. V. 295. P. 690–694. https://doi.org/10.1126/science.1066168
  74. Mäkelä J.P., McEvoy L. Auditory evoked fields to illusory sound source movements // Exp. Brain Res. 1996. V. 110. P. 446–454. https://doi.org/10.1007/BF00229144
  75. Martin B.A., Boothroyd A. Cortical, auditory, event-related potentials in response to periodic and aperiodic stimuli with the same spectral envelope // Ear Hear. 1999. V. 20. № 1. P. 33–44. https://doi.org/10.1097/00003446-199902000-00004
  76. Martin B.A., Boothroyd A. Cortical, auditory, evoked potentials in response to changes of spectrum and amplitude // J. Acoust. Soc. Am. 2000. V. 107. P. 2155–2161. https://doi.org/10.1121/1.428556
  77. Martin B.A., Boothroyd A., Ali D., Leach-Berth T. Stimulus presentation strategies for eliciting the acoustic change complex: increasing efficiency // Ear Hear. 2010. V. 31. № 3. P. 356–366. https://doi.org/10.1097/AUD.0b013e3181ce6355
  78. Maurer J.P., Bach M. Isolating motion responses in visual evoked potentials by pre-adapting flicker-sensitive mechanisms // Exp. Brain Res. 2003. V. 151. P. 536–541. https://doi.org/10.1007/s00221-003-1509-2
  79. Ostroff J.M., Martin B.A., Boothroyd A. Cortical evoked response to acoustic change within a syllable // Ear Hear. 1998. V. 19. P. 290–297. https://doi.org/10.1097/00003446-199808000-00004
  80. Palomäki K., Alku P., Mäkinen V., May P., Tiitinen H. Sound localization in the human brain: neuromagnetic observations // NeuroReport. 2000. V. 11. P. 1535–1538.
  81. Papesh M.A., Folmer R.L., Gallun F.J. Cortical Measures of Binaural Processing Predict Spatial Release from Masking Performance // Front. Hum. Neurosci. 2017. V. 11. № 124. https://doi.org/10.3389/fnhum.2017.00124.
  82. Patzwahl D.R., Zanker J.M. Mechanisms of human motion perception: combining evidence from evoked potentials, behavioural performance and computational modeling // European Journal of Neuroscience. 2000. V. 12. P. 273–282. https://doi.org/10.1046/j.1460-9568.2000.00885.x
  83. Patzwahl D.R., Zanker J.M., Altenmüller E.O. Cortical potentials reflecting motion processing in humans // Vis. Neurosci. 1994. V. 11. P. 1135–1147. https://doi.org/10.1017/s0952523800006945
  84. Pavani F., Macaluso E., Warren J.D., Driver J., Griffiths T.D. A common cortical substrate activated by horizontal and vertical sound movement in the human brain // Curr. Biol. 2002. V. 12. P. 1584–1590. https://doi.org/10.1016/S0960-9822(02)01143-0
  85. Perrin F., Pernier J., Bertrand O., Echallier J.F. Spherical splines for scalp potential and current density mapping // Electroencephalography and Clinical Neurophysiology. 1989. V. 72. P. 184–187.
  86. Perrott D.R., Musicant A. Rotating tones and binaural beats // Journal of the Acoustical Society of America. 1977. V. 61. № 5. P. 1288–1292. https://doi.org/10.1121/1.381430
  87. Rahne T., Böckmann M., von Specht H., Sussman E.S. Visual cues can modulate integration and segregation of objects in auditory scene analysis // Brain Res. 2007. V. 1144. P. 127–135. https://doi.org/10.1016/j.brainres.2007.01.074
  88. Rahne T., Böckmann-Barthel M. Visual cues release the temporal coherence of auditory objects in auditory scene analysis // Brain Res. 2009. V. 1300. P. 125–134. https://doi.org/10.1016/j.brainres.2009.08.086.
  89. Recanzone G.H. Interactions of auditory and visual stimuli in space and time // Hear. Res. 2009. V. 258. P. 89–99. https://doi.org/10.1016/j.heares.2009.04.009.
  90. Roggerone V., Vacher J., Tarlao C. et al. Auditory motion perception emerges from successive sound localizations integrated over time // Sci. Rep. 2019. V. 9. № 16437. https://doi.org/10.1038/s41598-019-52742-0
  91. Saberi K., Hafter E.R. Experiments on Auditory Motion Discrimination // Binaural and spatial hearing in real and virtual environments / Eds. R.H. Gilkey, T.R. Anderson. Mahwah, NJ: Lawrence Erlbaum Associates, 1997. P. 315–329.
  92. Saberi K., Perrott D.R. Minimum audible movement angles as a function of sound source trajectory // Journal of the Acoustical Society of America. 1990. V. 88. № 6. P. 2639–2644. https://doi.org/10.1121/1.399984
  93. Salminen N.H., May P.J.C., Alku P., Tiitinen H. A Population Rate Code of Auditory Space in the Human Cortex // PLoS ONE. 2009. V. 4. № 10. e7600. https://doi.org/10.1371/journal.pone.0007600
  94. Salminen N.H., Tiitinen H., Miettinen I., Alku P., May P.J. Asymmetrical representation of auditory space in human cortex // Brain.Res. 2010. V. 1306. P. 93–99. https://doi.org/10.1016/j.brainres.2009.09.095
  95. Salminen N.H., Tiitinen H., May P.J.C. Auditory spatial processing in the human cortex // Neuroscientist. 2012. V. 18. № 6. P. 602–612. https://doi.org/10.1177/1073858411434209
  96. Sams M., Hämäläinen M., Hari R., McEvoy L. Human auditory cortical mechanisms of sound lateralization: I. Interaural time differences within sound // Hear. Res. 1993. V. 67. № 1–2. P. 89–97. https://doi.org/10.1016/0378-5955(93)90236-t
  97. Sarrou M., Schmitz P.M., Hamm N., Rübsamen R. Sound frequency affects the auditory motion-onset response in humans // Experimental Brain Research. 2018. V. 236. P. 2713–2726. https://doi.org/10.1007/s00221-018-5329-9
  98. Schlykowa L., van Dijk B.W., Ehrenstein W.H. Motion-onset visual-evoked potentials as a function of retinal eccentricity in man // Cognit. Brain Res. 1993. V. 1. P. 169–174. https://doi.org/10.1016/0926-6410(93)90024-y
  99. Schmiedchen K., Freigang C., Rübsamen R., Richter N. A comparison of visual and auditory representational momentum in spatial tasks // Attention, Perception, & Psychophysics. 2013. V. 75. № 7. P. 1507–1519. https://doi.org/10.3758/s13414-013-0495-0
  100. Schönwiesner M., Krumbholz K., Rübsamen R., Fink G.R., von Cramon D.Y. Hemispheric asymmetry for auditory processing in the human auditory brainstem, thalamus, and cortex // Cereb.Cortex. 2007. V. 17. P. 492–499. https://doi.org/10.1093/cercor/bhj165
  101. Senna, I., Parise C. V., Ernst M. O. Hearing in slow motion: Humans underestimate the speed of moving sounds // Sci. Rep. 2015. V. 5. № 14054. https://doi.org/10.1038/srep14054
  102. Senna I., Parise C.V., Ernst M.O. Modulation frequency as a cue for auditory speed perception // Proc. R. Sci. 2017. V. 284. № 20170673. http://dx.doi.org/10.1098/rspb.2017.0673
  103. Shestopalova L.B., Petropavlovskaia E.A., Semenova V.V., Nikitin N.I. Lateralization of brain responses to auditory motion: A study using single-trial analysis // Neuroscience Res. 2021а. V. 162. P. 31–44. https://doi.org/10.1016/j.neures.2020.01.007
  104. Shestopalova L.B., Petropavlovskaia E.A., Semenova V.V., Nikitin N.I. Brain Oscillations evoked by sound motion // Brain Research. 2021b. V. 1752. № 147232. https://doi.org/10.1016/j.brainres.2020.147232
  105. Shestopalova L.B., Petropavlovskaia E.A., Salikova D.A., Semenova V.V. Temporal integration of sound motion: Motion-onset response and perception // Hearing Research. 2024. V. 441. № 108922. https://doi.org/10.1016/j.heares.2023.108922
  106. Soto-Faraco S., Kingstone A., Spence C. Multisensory contributions to the perception of motion // Neuropsychologia. 2003. V. 41. P. 1847–1862. https://doi.org/10.1016/s0028-3932(03)00185-4
  107. Soto-Faraco S., Spence C., Kingstone A. Crossmodal dynamic capture: congruency effects in the perception of motion across sensory modalities // J. Exp. Psychol. Hum. Perform. Percept. 2004. V. 30. № 2. P. 330–345. https://doi.org/10.1037/0096-1523.30.2.330
  108. Soto-Faraco S., Väljamäe A. Multisensory Interactions during Motion Perception // The Neural Bases of Multisensory processes / Eds. M.M. Murray, M.T. Wallace. Boca Raton, London, N.Y.: CRC press, 2012. P. 583–602.
  109. Spitzer M.W., Semple M.N. Interaural phase coding in auditory midbrain: influence of dynamic stimulus features // Science. 1991. V. 254. № 5032. P. 721–724. https://doi.org/10.1126/science.1948053
  110. Stekelenburg J.J. & Vroomen J. Neural correlates of audiovisual motion capture // Experimental Brain Research. 2009. V. 198. P. 383–390.
  111. Teshiba T.M., Ling J., Ruhl D.A. et.al. Evoked and intrinsic asymmetries during auditory attention: implications for the contralateral and neglect models of functioning // Cereb. Cortex. 2013. V. 23. № 3. P. 560–569. https://doi.org/ 10.1093/cercor/bhs039
  112. Tiitinen H., Salminen N.H., Palomäki K. et.al. Neuromagnetic recordings reveal the temporal dynamics of auditory spatial processing in the human cortex // Neurosci. Lett. 2006. V. 396. P. 17–22. https://doi.org/10.1016/j.neulet.2005.11.018
  113. Toronchuk J.M., Stumpf E., Cynader M.S. Auditory cortex neurons sensitive to correlates of auditory motion: underlying mechanisms // Experimental Brain Research. 1992. V. 88. P. 169–180. https://doi.org/10.1007/BF02259138
  114. Vroomen J., de Gelder B. Visual motion influences the contingent auditory motion aftereffect // Psychol. Sci. 2003. V. 14. № 4. P. 357–361. https://doi.org/10.1111/1467-9280.24431
  115. Warren J.D., Griffiths T.D. Distinct mechanisms for processing spatial sequences and pitch sequences in the human auditory brain // J. Neuroscience. 2003. V. 23. № 13. P. 5799–5804. https://doi.org/10.1523/JNEUROSCI.23-13-05799.2003
  116. Warren J.D., Zielinski B.A., Green G.G., Rauschecker J.P., Griffiths T.D. Perception of sound-source motion by the human brain // Neuron. 2002. V. 34. № 1. P. 139–148. https://doi.org/10.1016/s0896-6273(02)00637-2
  117. Weisz N., Obleser J. Synchronisation signatures in the listening brain: a perspective from non-invasive neuroelectrophysiology // Hear. Res. 2014. V. 307. P. 16–28. http://doi.org/10.1016/j.heares.2013.07.009
  118. Xiang J., Chuang S., Wilson D. et.al. Sound motion evoked magnetic fields // Electroencephalography and Clinical Neurophysiology. 2002. V. 113. P. 1–9. https://doi.org/10.1016/s1388-2457(01)00709-x
  119. Zatorre R.J., Mondor T.A., Evans A.C. Auditory attention to space and frequency activates similar cerebral systems // NeuroImage. 1999. V. 10. № 5. P. 544–554. https://doi.org/10.1006/nimg.1999.0491
  120. Zatorre R.J., Bouffard M., Ahad P., Belin P. Where is ‘where’ in the human auditory cortex? // Nat. Neurosci. 2002. V. 5. № 9. P. 905–909. https://doi.org/10.1038/nn904
  121. Zoefel B., ten Oever S., Sack A.T. The Involvement of Endogenous Neural Oscillations in the Processing of Rhythmic Input: More Than a Regular Repetition of Evoked Neural Responses // Front. Neurosci. 2018. V. 12. № 95. https://doi.org/10.3389/fnins.2018.00095

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Evoked potentials for switching on and for movement of the stimulus [3]. The vertical dotted line indicates the moments of switching on (0) and the beginning of movement (0d). The effect of movement was created by a linear or instantaneous change in DT by 660 μs. The control stimuli were the signals from the main experiment, presented diotically. The ordinate axis shows the response amplitude (μV). Negativity is upward.

Download (335KB)
3. Fig. 2. Grand-averaged evoked responses to movement onset [105]. The movement effect was created by a linear change in DT by 800 μs over 1000, 600, 375, or 250 ms, corresponding to the calculated rates shown in the figure. The abscissa shows the time from stimulus onset (ms). The ordinate shows the response amplitude (μV). Negativity is up.

Download (377KB)
4. Fig. 3. MOR potentials for different localization features according to [37] (with modifications). Top – diagram of stimuli with delayed movement. Y-axis – angular position of stimulus (deg). Bottom – grand-averaged responses in lead Cz. X-axis – time relative to signal onset. Y-axis – response amplitude (μV). Downward negativity.

Download (397KB)
5. Fig. 4. Amplitude and latency of MOR components as a function of stimulus movement velocity, according to different authors. The stimuli were moved to the left or to the right of the head midline. The cN1 and cP2 amplitude values ​​(top) are shown in different scales along the ordinate (μV). Different markers indicate different sound stimulation conditions. Diamonds indicate dichotic stimulation with interaural differences in time (ΔT) and/or intensity (ΔI), circles indicate virtual movement (HRTF filters), crosses indicate free sound field. Markers are connected by a solid line in cases where the results were obtained in the same study. 1 – Semenova et al., 2022 (ΔT); 2 – Getzmann, Lewald, 2010a (ΔT); 3 – Getzmann, Lewald, 2010a (ΔI); 4 – Altmann et al., 2017 (ΔT and ΔI); 5 – Krumbholz et al., 2007 (ΔT); 6 – Getzmann, 2009 (HRTF); 7 – Getzmann, Lewald, 2010a (HRTF); 8 – Grzeschik et al., 2010 (HRTF); 9 – Getzmann, Lewald, 2012 (free field); 10 – Getzmann, Lewald, 2010a (free field).

Download (514KB)
6. Fig. 5. Time-frequency representation of responses to fast and instantaneous stimulus displacement (averaged over 24 frontocentral leads) [104] (modified). Upper panel: spectral perturbation of EPs (ERSP-induced). Middle panel: spectral perturbation of individual epochs (total ERSP). Gradient scales of the upper and middle panels show the ERSP power expressed in dB. Lower panel: phase coherence of individual epochs (ITC). Gradient scale shows the ITC value in relative units. Arrows mark the moment of stimulus onset and the moment of the onset of the change in interaural differences ΔT.

Download (2MB)
7. Fig. 6. Oscillatory responses to movement onset as a function of stimulus velocity [104] (modified). Time-frequency representations of responses are averaged in four EEG frequency ranges. To convert spectral values ​​to comparable units of measurement, z-transformation was performed. The ordinate axis shows relative units. The abscissa axis shows stimulus velocity in categorical representation: 1 – stationary, 2 – slow, 3 – fast, 4 – instantaneous movement. Vertical bars show standard error of the mean.

Download (747KB)
8. Fig. 7. Latency of the MOR potential components and the time to reach MAMA depending on the speed of movement of the sound stimulus [7]. The left ordinate axis is latency (ms), the right ordinate axis is the time to reach MAMA (the time to determine the direction of sound displacement, ms); the abscissa axis is the speed of movement. Black markers are the latencies of the cN1 and cP2 components. White markers with a black outline are the data from the work by Shestopalova et al. (2021). The data from the psychophysical experiment (7 speeds of movement) are marked in gray.

Download (233KB)

Copyright (c) 2024 Russian Academy of Sciences