Brain response to sound motion-onset in human
- Authors: Shestopalova L.B.1, Semenova V.V.1, Petropavlovskaia E.A.1
-
Affiliations:
- Pavlov Institute of Physiology, Russian Academy of Sciences
- Issue: Vol 55, No 3 (2024)
- Pages: 22-44
- Section: Articles
- URL: https://ruspoj.com/0301-1798/article/view/676202
- DOI: https://doi.org/10.31857/S0301179824030022
- EDN: https://elibrary.ru/BBNUMN
- ID: 676202
Cite item
Abstract
This review comprehensively examines the features of the motion-specific brain response produced by human hearing system, the so-called motion-onset response (MOR). We discuss the interpretations of this component of auditory evoked potentials, its dependence on velocity and direction of sound motion and on various spatial characteristics of sound stimuli. We review the studies of event-related oscillations underlying the MOR which have shown that gradual sound motion causes the phase alignment of the delta-alpha range to the motion onset. We also consider the influence of audio-visual integration on motion processing. The MOR component as a correlate of the processes of spatial integration can provide new information about an early pre-conscious activation of brain structures that facilitates orientation and adaptation of a person to a changing acoustic environment.
Full Text

About the authors
L. B. Shestopalova
Pavlov Institute of Physiology, Russian Academy of Sciences
Author for correspondence.
Email: shestopalovalb@infran.ru
Russian Federation, 199034, St. Petersburg
V. V. Semenova
Pavlov Institute of Physiology, Russian Academy of Sciences
Email: shestopalovalb@infran.ru
Russian Federation, 199034, St. Petersburg
E. A. Petropavlovskaia
Pavlov Institute of Physiology, Russian Academy of Sciences
Email: shestopalovalb@infran.ru
Russian Federation, 199034, St. Petersburg
References
- Альтман Я.А. Локализация движущегося источника звука. Л.: Наука, 1983. 176 с.
- Альтман Я.А. Пространственный слух. СПб.: Институт физиологии им. И.П. Павлова РАН, 2011. 311 с.
- Варфоломеев А.Л., Старостина Л.В. Слуховые вызванные потенциалы человека при иллюзорном движении звукового образа // Российский физиологический журнал им.Сеченова. 2006. Т. 92. № 9. С. 1046–1057.
- Петропавловская Е.А., Шестопалова Л.Б., Вайтулевич С.Ф. Проявления инерционности слуховой системы при локализации движущихся звуковых образов малой длительности // Физиология человека. 2010. Т. 36. № 4. С. 1–10.
- Семенова В.В. Окно интеграции про-странственной слуховой информации у человека: электрофизиологические и психофизические аспекты восприятия: дис. ... канд. биол. наук. СПб.: Институт физиологии им. И.П. Павлова РАН, 2022. 118 с.
- Семенова В.В., Шестопалова Л.Б., Петропавловская Е.А., Никитин Н.И. Константы восприятия отсроченного движения звуковых стимулов // Успехи физиологических наук. 2020. Т. 51. № 2. С. 55–67. https://doi.org/10.31857/S0301179820020095
- Семенова В.В., Шестопалова Л.Б., Петропавловская Е.А., Саликова Д.А., Никитин Н.И. Латентность вызванного потенциала как показатель интегрирования акустической информации о движении звука // Физиология человека. 2022. Т.48. № 4. С. 57–68. https://doi.org/10.31857/S0131164622040105
- Шестопалова Л.Б., Петропавловская Е.А., Семенова В.В., Никитин Н.И. Вызванные потенциалы на звуковые стимулы с отсроченным началом движения в условиях активного и пассивного прослушивания // Журнал высшей нервной деятельности. 2016. Т. 66. № 5. С. 565–578. https://doi.org/10.7868/S0044467716050099
- Шестопалова Л.Б., Петропавловская Е.А., Семенова В.В., Никитин Н.И. Ритмическая активность мозга человека, связанная с движением звуковых стимулов // ЖВНД. 2020. Т. 70. № 5. С. 616–634. https://doi.org/10.31857/S0044467720050111.
- Ahissar M., Ahissar E., Bregman H., Vaadia E. Encoding of sound-source location and movement: Activity of single neurons and interactions between adjacent neurons in the monkey auditory cortex // Journal of Neurophysiology. 1992. V. 67. P. 203–215. https://doi.org/ 10.1152/jn.1992.67.1.203
- Altman J.A. Are there neurons detecting direction of sound source motion? // Experimental Neurology. 1968. V. 22. P. 13–25. https://doi.org/10.1016/0014-4886(68)90016-2
- Altman, J.A., Vaitulevich S.Ph. Auditory image movement in evoked potentials // Electroencephalography and Clinical Neurophysiology. 1990. V. 75. № 4. P. 323–333. https://doi.org/10.1016/0013-4694(90)90110-6
- Altman J.A., Viskov O.V. Discrimination of perceived movement velocity for fused auditory image in dichotic stimulation // The Journal of the Acoustical Society of America. 1977. V. 61. № 3. P. 816–819. https://doi.org/10.1016/0013-4694(90)90110-6
- Altmann C.F., Ueda R., Bucher B. et. al. Trading of dynamic interaural time and level difference cues and its effect on the auditory motion-onset response measured with electroencephalography // NeuroImage. 2017. V. 159. P. 185–194. https://doi.org/10.1016/j.neuroimage.2017.07.055
- Arnal L.H., Giraud A.L. Cortical oscillations and sensory predictions // Trends Cogn. Sci. 2012. V. 16. № 7. P. 390–398. https://doi.org/10.1016/j.tics.2012.05.003
- Bach M., Ullrich D. Motion adaptation governs the shape of motion-evoked cortical potentials // Vision Res. 1994. V. 34. P. 1541–1547. https://doi.org/10.1016/0042-6989(94)90111-2
- Barrett D.J.K., Hall D.A. Response preferences for “what” and “where” in human non-primary auditory cortex // Neuroimage. 2006. V. 32. P. 968–977. https://doi.org/10.1016/j.neuroimage.2006.03.050
- Baumgart F., Gaschler-Markefski B., Woldorff M.G., Heinze H.J., Schleich H. A movement-sensitive area in auditory cortex // Nature. 1999. V. 400. P. 724–726. https://doi.org/10.1038/23390
- Beer A.L., Röder B. Attending to visual or auditory motion affects perception within and across modalities: an event-related potential study // Eur J Neurosci. 2005. V. 21. № 4. P. 1116–30. https://doi.org/10.1111/j.1460-9568.2005.03927.x
- Bidet-Caulet A., Bertrand O. Dynamics of a temporo-fronto-parietal network during sustained spatial or spectral auditory processing // Journal of Cognitive Neuroscience. 2005. V. 17. № 11. P. 1691–1703. https://doi.org/10.1162/089892905774589244
- Bremmer F., Schlack A., Shah N.J. et al. Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys // Neuron. 2001. V. 29. № 1. P. 287–296. https://doi.org/10.1016/s0896-6273(01)00198-2
- Briley P.M., Kitterick P.T., Summerfield A.Q. Evidence for Opponent Process Analysis of Sound Source Location in Humans // J. Assoc. Res. Otolaryngol. 2013. V. 14. № 1. P. 83–101. https://doi.org/10.1007/s10162-012-0356-x
- Brunetti M., Belardinelli P., Caulo M. et al. Human brain activation during passive listening to sounds from different locations: an fMRI and MEG study // Hum. Brain Mapp. V. 2005. № 26. P. 251–261. https://doi.org/10.1002/hbm.20164
- Carlile S., Best V. Discrimination of sound source velocity by human listeners // The Journal of the Acoustical Society of America. 2002. V. 111. № 26. P. 1026–1035. https://doi.org/10.1121/1.1436067
- Carlile S., Leung J. The perception of Auditory motion // Trends in Hearing. 2016. V. 20. P. 1–19. https://doi.org/10.1177/2331216516644254
- Chandler D.W., Grantham D.W. Minimum audible movement angle in the horizontal plane as a function of stimulus frequency and bandwidth, source azimuth, and velocity // The Journal of Acoustical Society of America. 1992. V. 91. № 3. P. 1624–1636. https://doi.org/10.1121/1.402443
- Chaplin T.A., Rosa M.G.P., Lui L.L. Auditory and Visual Motion Processing and Integration in the Primate Cerebral Cortex // Front. Neural Circuits. 2018. V. 12. № 93. https://doi.org/10.3389/fncir.2018.00093
- Deouell L.Y., Bentin S., Giard M.H. Mismatch negativity in dichotic listening: evidence for interhemispheric differences and multiple generators // Psychophysiology. 1998. V. 35. P. 355–365.
- Dietz M.J., Friston K.J., Mattingley J.B., Roepstorff A., Garrido M.I. Effective connectivity reveals right-hemisphere dominance in audiospatial perception: implications for models of spatial neglect // J. Neurosci. 2014. V. 34. № 14. P. 5003–5011. https://doi org/10.1523%2FJNEUROSCI.3765-13.2014
- Ducommun C.Y., Murray M.M., Thut G. et al. Segregated processing of auditory motion and auditory location: an ERP mapping study // NeuroImage. 2002. V. 16. P. 76–88. https://doi.org/10.1006/nimg.2002.1062
- Fan Z.-T., Zhao Z.-H., Sharma M. et. al. Acoustic change complex evoked by horizontal sound location change in young adults with normal hearing // Frontiers in Neuroscience. 2022. V. 16. № 908989. https://doi.org/10.3389/fnins.2022.908989
- Freeman C. A., Leung J., Wufong E. et. al. Discrimination Contours for Moving Sounds Reveal Duration and Distance Cues Dominate Auditory Speed Perception // PLoS ONE. V. 9. № 7. e102864. https://doi.org/10.1371/journal.pone.0102864
- Getzmann S. Effects of velocity and motion-onset delay on detection and discrimination of sound motion // Hearing Research. 2008. V. 246. P. 44–51. https://doi.org/10.1016/j.heares.2008.09.007
- Getzmann S. Effect of auditory motion velocity on reaction time and cortical processes // Neuropsychologia. 2009. V. 47. P. 2625–2633.
- Getzmann S. Auditory motion perception: onset position and motion direction are encoded in discrete processing stages // European Journal of Neuroscience. 2011. V. 33. P. 1339–1350. https://doi.org/10.1111/j.1460-9568.2011.07617.x
- Getzmann S., Lewald J., Guski R. Representational momentum in spatial hearing // Perception. 2004. V. 33. P. 591–600. https://doi.org/10.1068/p5093
- Getzmann S., Lewald J. Effects of natural versus artificial spatial cues on electrophysiological correlates of auditory motion // Hearing Research. 2010a. V. 259. P. 44–54. https://doi.org/10.1016/j.heares.2009.09.021
- Getzmann S., Lewald J. Shared cortical systems for processing of horizontal and vertical sound motion // J. Neurophysiol. 2010b. V. 103. P. 1896–1904. http://dx.doi.org/10.1152/jn.00333.2009
- Getzmann S., Lewald J. The effect of spatial adaptation on auditory motion processing // Hearing Research. 2011. V. 272. № 1–2. P. 21–29. https://doi.org/10.1016/j.heares.2010.11.005
- Getzmann S., Lewald J. Cortical processing of change in sound location: Smooth motion versus discontinuous displacement // Brain Research. 2012. V. 1466. P. 119–127. https://doi.org/10.1016/j.brainres.2012.05.033
- Getzmann S., Lewald J. Modulation of Auditory Motion Processing by Visual Motion // Journal of Psychophysiology. 2014. V. 28. P. 82–100. https://doi.org/10.1027/0269-8803/a000113
- Grantham D.W. Detection and discrimination of simulated motion of auditory targets in the horizontal plane // The Journal of the Acoustical Society of America. 1986. V. 79. № 6. P. 1939–1949. https://doi.org/10.1121/1.393201
- Grantham D.W. Auditory motion perception: Snapshots revisited // Binaural and spatial hearing in real and virtual environments / Eds. R.H. Gilkey, T.R. Anderson. Mahwah, NJ: Lawrence Erlbaum Associates, 1997. P. 295–313.
- Griffiths T.D., Bench C.J., Frackowiak R.S.J. Human cortical areas selectively activated by apparent sound motion // Current Biology. 1994. V. 4. P. 892–895. https://doi.org/10.1016/s0960-9822(00)00198-6
- Griffiths T.D., Green G.G., Rees A., Rees G. Human brain areas involved in the analysis of auditory movement // Human Brain Mapping. 2000. V. 9. P. 72–80. https://doi.org/10.1002/(sici)1097-0193(200002)9:2%3C72::aid-hbm2%3E3.0.co;2-9
- Griffiths T.D., Rees G., Rees A. et al. Right parietal cortex is involved in the perception of sound movement in humans // Nature Neuroscience. 1998. V. 1. P. 74–79. https://doi.org/10.1038/276
- Grzeschik R., Böckmann-Barthel M., Mühler R., Hoffmann M.B. Motion-onset auditory-evoked potentials critically depend on history // Experimental Brain Research. 2010. V. 203. P. 159–168. https://doi.org/10.1007/s00221-010-2221-7
- Grzeschik R., Böckmann-Barthel M., Mühler R., Verhey J.L., Hoffmann, M.B. Direction-specific adaptation of motion-onset auditory evoked potentials // European Journal of Neuroscience. 2013. V. 38. P. 2557–2565. https://doi.org/10.1111/ejn.12264
- Grzeschik R., Lewald J., Verhey J.L., Hoffmann M.B., Getzmann S. Absence of direction-specific cross-modal visual-auditory adaptation in motion-onset ERPs // European Journal of Neuroscience. 2016. V. 43. № 1. P. 66–77. https://doi.org/10.1111/ejn.13102
- Haegens S., Golumbic E.Z. Rhythmic facilitation of sensory processing: A critical review // Neurosci. Biobehav. Rev. 2018. V. 86, P. 150–165. https://doi.org/10.1016/j.neubiorev.2017.12.002.
- Hall D.A., Hart H.C., Johnsrude I.S. Relationships between human auditory cortical structure and function // Audiology and Neuro-Otology. 2003. V. 8. № 1. P. 1–18. https://doi.org/10.1159/000067894
- Harris J.D., & Sergeant R.L. Monaural-binaural minimum audible angles for a moving sound source // Journal of Speech and Hearing Research. 1971. V. 14. P. 618–629. https://doi.org/10.1044/jshr.1403.618
- Heinrich S.P. A primer on motion visual evoked potentials // Documenta Ophthalmologica. 2007. V. 114. P. 83–105. https://doi.org/10.1007/s10633-006-9043-8
- Herrmann C.S., Grigutsch M., Busch N.A. EEG oscillations and wavelet analysis // Event-related potentials: а methods handbook / Ed. T.C. Handy. Cambridge, London: MIT Press, 2005. P. 229–259.
- Huang S., Chang W.-T., Belliveau J.W., Hämäläinen M., Ahveninen J. Lateralized parietotemporal oscillatory phase synchronization during auditory selective attention // Neuroimage. 2014. V. 86. P. 461–469. https://doi.org/10.1016/j.neuroimage.2013.10.043
- Jerger J., Estes R. Asymmetry in event-related potentials to simulated auditory motion in children, young adults, and seniors // Journal of the American Academy of Audiology. 2002. V. 13. № 1. P. 1–13.
- Kaiser J., Lutzenberger W., Preissl H., Ackermann H., Birbaumer N. Right-hemisphere dominance for the processing of sound-source lateralization // J. Neurosci. 2000. V. 20. P. 6631–6639. https://doi.org/10.1523/JNEUROSCI.20-17-06631.2000
- Kaya U., Kafaligonul H. Audiovisual interactions in speeded discrimination of a visual event // Psychophysiology. 2021. V. 58. № 4. e13777. https://doi.org/10.1111/psyp.13777
- Kaya U., Yildirim F.Z., Kafaligonul H. The involvement of centralized and distributed processes in sub-second time interval adaptation: an ERP investigation of apparent motion // EJN. 2017. V. 46. № 8. P. 2325–2338. https://doi.org/10.1111/ejn.13691.
- Kayser C., Petkov C.I., Remedios R., Logothetis N.K. Multisensory Influences on Auditory Processing: Perspectives from fMRI and Electrophysiology // The Neural Bases of Multisensory processes / Eds. M.M. Murray, M.T. Wallace. Boca Raton, London, N.Y.: CRC press, 2012. P. 99–114.
- Klimesch W., Sauseng P., Hanslmayr S., Gruber W., Freunberger R. Event-related phase reorganization may explain evoked neural dynamics // Neurosci. Biobehav. Rev. 2007. V. 31. P. 1003–1016. http://doi.org/10.1016/j.neubiorev.2007.03.005.
- Koelewijn T., Bronkhorst A., Theeuwes J. Attention and the multiple stages of multisensory integration: A review of audiovisual studies // Acta Psychologica. 2010. V. 134. P. 372–384. https://doi.org/10.1016/j.actpsy.2010.03.010
- Kreegipuu К., Allik J. Detection of motion onset and offset: reaction time and visual evoked potential analysis // Psychological Research. 2007. V. 71. № 6. P. 703–708. https://doi.org/10.1007/s00426-006-0059-1
- Kreitewolf J., Lewald J., Getzmann S. Effect of attention on cortical processing of sound motion: An EEG study // NeuroImage. 2011. V. 54. P. 2340–2349. https://doi.org/10.1016/j.neuroimage.2010.10.031
- Krumbholz K., Schönwiesner M., Rübsamen R. et.al. Hierarchical processing of sound location and motion in the human brainstem and planum temporale // Eur. J. Neurosci. 2005. V. 21. P. 230–238. https://doi.org/10.1111/j.1460-9568.2004.03836.x
- Krumbholz K., Schönwiesner M., von Cramon D.Y. et.al. Representation of interaural temporal information from left and right auditory space in the human planum temporale and inferior parietal lobe // Cerebral Cortex. 2005. V. 15. P. 317–324. https://doi.org/10.1093/cercor/bhh133
- Krumbholz K., Hewson-Stoate N., Schönwiesner M. Cortical response to auditory motion suggests an asymmetry in the reliance on inter-hemispheric connections between the left and right auditory cortices // J. Neurophysiol. 2007. V. 97. P. 1649–1655. https://doi.org/10.1152/jn.00560.2006
- Lewis J.W., Beauchamp M.S., DeYoe E.A. A comparison of visual and auditory motion processing in human cerebral cortex // Cerebral Cortex. 2000. V. 10. № 9. P. 873–88. https://doi.org/10.1093/cercor/10.9.873
- Locke S.M., Leung J., Carlile S. Sensitivity to Auditory Velocity Contrast // Scientific Reports. 2016. V. 6. № 27725. https://doi.org/10.1038/srep27725.
- López-Moliner J., Soto-Faraco S. Vision affects how fast we hear sounds move // Journal of Vision. 2007. V. 7. № 12. P. 1–7. https://doi.org/10.1167/7.12.6
- Magezi D.A., Krumbholz K. Evidence for opponent channel coding of interaural time differences in human auditory cortex // J. Neurophysiol. 2010. V. 104. № 4. P. 1997–2007. https://doi.org/10.1152/jn.00424.2009
- Makeig S., Debener S., Onton J., Delorme A. Mining event-related brain dynamics // Trends Cogn. Sci. 2004. V. 8. № 5. P. 204–210. http://doi.org/10.1016/j.tics.2004.03.008
- Makeig S., Westerfield M., Jung T.-P. et al. Dynamic brain sources of visual evoked responses // Science. 2002. V. 295. P. 690–694. https://doi.org/10.1126/science.1066168
- Mäkelä J.P., McEvoy L. Auditory evoked fields to illusory sound source movements // Exp. Brain Res. 1996. V. 110. P. 446–454. https://doi.org/10.1007/BF00229144
- Martin B.A., Boothroyd A. Cortical, auditory, event-related potentials in response to periodic and aperiodic stimuli with the same spectral envelope // Ear Hear. 1999. V. 20. № 1. P. 33–44. https://doi.org/10.1097/00003446-199902000-00004
- Martin B.A., Boothroyd A. Cortical, auditory, evoked potentials in response to changes of spectrum and amplitude // J. Acoust. Soc. Am. 2000. V. 107. P. 2155–2161. https://doi.org/10.1121/1.428556
- Martin B.A., Boothroyd A., Ali D., Leach-Berth T. Stimulus presentation strategies for eliciting the acoustic change complex: increasing efficiency // Ear Hear. 2010. V. 31. № 3. P. 356–366. https://doi.org/10.1097/AUD.0b013e3181ce6355
- Maurer J.P., Bach M. Isolating motion responses in visual evoked potentials by pre-adapting flicker-sensitive mechanisms // Exp. Brain Res. 2003. V. 151. P. 536–541. https://doi.org/10.1007/s00221-003-1509-2
- Ostroff J.M., Martin B.A., Boothroyd A. Cortical evoked response to acoustic change within a syllable // Ear Hear. 1998. V. 19. P. 290–297. https://doi.org/10.1097/00003446-199808000-00004
- Palomäki K., Alku P., Mäkinen V., May P., Tiitinen H. Sound localization in the human brain: neuromagnetic observations // NeuroReport. 2000. V. 11. P. 1535–1538.
- Papesh M.A., Folmer R.L., Gallun F.J. Cortical Measures of Binaural Processing Predict Spatial Release from Masking Performance // Front. Hum. Neurosci. 2017. V. 11. № 124. https://doi.org/10.3389/fnhum.2017.00124.
- Patzwahl D.R., Zanker J.M. Mechanisms of human motion perception: combining evidence from evoked potentials, behavioural performance and computational modeling // European Journal of Neuroscience. 2000. V. 12. P. 273–282. https://doi.org/10.1046/j.1460-9568.2000.00885.x
- Patzwahl D.R., Zanker J.M., Altenmüller E.O. Cortical potentials reflecting motion processing in humans // Vis. Neurosci. 1994. V. 11. P. 1135–1147. https://doi.org/10.1017/s0952523800006945
- Pavani F., Macaluso E., Warren J.D., Driver J., Griffiths T.D. A common cortical substrate activated by horizontal and vertical sound movement in the human brain // Curr. Biol. 2002. V. 12. P. 1584–1590. https://doi.org/10.1016/S0960-9822(02)01143-0
- Perrin F., Pernier J., Bertrand O., Echallier J.F. Spherical splines for scalp potential and current density mapping // Electroencephalography and Clinical Neurophysiology. 1989. V. 72. P. 184–187.
- Perrott D.R., Musicant A. Rotating tones and binaural beats // Journal of the Acoustical Society of America. 1977. V. 61. № 5. P. 1288–1292. https://doi.org/10.1121/1.381430
- Rahne T., Böckmann M., von Specht H., Sussman E.S. Visual cues can modulate integration and segregation of objects in auditory scene analysis // Brain Res. 2007. V. 1144. P. 127–135. https://doi.org/10.1016/j.brainres.2007.01.074
- Rahne T., Böckmann-Barthel M. Visual cues release the temporal coherence of auditory objects in auditory scene analysis // Brain Res. 2009. V. 1300. P. 125–134. https://doi.org/10.1016/j.brainres.2009.08.086.
- Recanzone G.H. Interactions of auditory and visual stimuli in space and time // Hear. Res. 2009. V. 258. P. 89–99. https://doi.org/10.1016/j.heares.2009.04.009.
- Roggerone V., Vacher J., Tarlao C. et al. Auditory motion perception emerges from successive sound localizations integrated over time // Sci. Rep. 2019. V. 9. № 16437. https://doi.org/10.1038/s41598-019-52742-0
- Saberi K., Hafter E.R. Experiments on Auditory Motion Discrimination // Binaural and spatial hearing in real and virtual environments / Eds. R.H. Gilkey, T.R. Anderson. Mahwah, NJ: Lawrence Erlbaum Associates, 1997. P. 315–329.
- Saberi K., Perrott D.R. Minimum audible movement angles as a function of sound source trajectory // Journal of the Acoustical Society of America. 1990. V. 88. № 6. P. 2639–2644. https://doi.org/10.1121/1.399984
- Salminen N.H., May P.J.C., Alku P., Tiitinen H. A Population Rate Code of Auditory Space in the Human Cortex // PLoS ONE. 2009. V. 4. № 10. e7600. https://doi.org/10.1371/journal.pone.0007600
- Salminen N.H., Tiitinen H., Miettinen I., Alku P., May P.J. Asymmetrical representation of auditory space in human cortex // Brain.Res. 2010. V. 1306. P. 93–99. https://doi.org/10.1016/j.brainres.2009.09.095
- Salminen N.H., Tiitinen H., May P.J.C. Auditory spatial processing in the human cortex // Neuroscientist. 2012. V. 18. № 6. P. 602–612. https://doi.org/10.1177/1073858411434209
- Sams M., Hämäläinen M., Hari R., McEvoy L. Human auditory cortical mechanisms of sound lateralization: I. Interaural time differences within sound // Hear. Res. 1993. V. 67. № 1–2. P. 89–97. https://doi.org/10.1016/0378-5955(93)90236-t
- Sarrou M., Schmitz P.M., Hamm N., Rübsamen R. Sound frequency affects the auditory motion-onset response in humans // Experimental Brain Research. 2018. V. 236. P. 2713–2726. https://doi.org/10.1007/s00221-018-5329-9
- Schlykowa L., van Dijk B.W., Ehrenstein W.H. Motion-onset visual-evoked potentials as a function of retinal eccentricity in man // Cognit. Brain Res. 1993. V. 1. P. 169–174. https://doi.org/10.1016/0926-6410(93)90024-y
- Schmiedchen K., Freigang C., Rübsamen R., Richter N. A comparison of visual and auditory representational momentum in spatial tasks // Attention, Perception, & Psychophysics. 2013. V. 75. № 7. P. 1507–1519. https://doi.org/10.3758/s13414-013-0495-0
- Schönwiesner M., Krumbholz K., Rübsamen R., Fink G.R., von Cramon D.Y. Hemispheric asymmetry for auditory processing in the human auditory brainstem, thalamus, and cortex // Cereb.Cortex. 2007. V. 17. P. 492–499. https://doi.org/10.1093/cercor/bhj165
- Senna, I., Parise C. V., Ernst M. O. Hearing in slow motion: Humans underestimate the speed of moving sounds // Sci. Rep. 2015. V. 5. № 14054. https://doi.org/10.1038/srep14054
- Senna I., Parise C.V., Ernst M.O. Modulation frequency as a cue for auditory speed perception // Proc. R. Sci. 2017. V. 284. № 20170673. http://dx.doi.org/10.1098/rspb.2017.0673
- Shestopalova L.B., Petropavlovskaia E.A., Semenova V.V., Nikitin N.I. Lateralization of brain responses to auditory motion: A study using single-trial analysis // Neuroscience Res. 2021а. V. 162. P. 31–44. https://doi.org/10.1016/j.neures.2020.01.007
- Shestopalova L.B., Petropavlovskaia E.A., Semenova V.V., Nikitin N.I. Brain Oscillations evoked by sound motion // Brain Research. 2021b. V. 1752. № 147232. https://doi.org/10.1016/j.brainres.2020.147232
- Shestopalova L.B., Petropavlovskaia E.A., Salikova D.A., Semenova V.V. Temporal integration of sound motion: Motion-onset response and perception // Hearing Research. 2024. V. 441. № 108922. https://doi.org/10.1016/j.heares.2023.108922
- Soto-Faraco S., Kingstone A., Spence C. Multisensory contributions to the perception of motion // Neuropsychologia. 2003. V. 41. P. 1847–1862. https://doi.org/10.1016/s0028-3932(03)00185-4
- Soto-Faraco S., Spence C., Kingstone A. Crossmodal dynamic capture: congruency effects in the perception of motion across sensory modalities // J. Exp. Psychol. Hum. Perform. Percept. 2004. V. 30. № 2. P. 330–345. https://doi.org/10.1037/0096-1523.30.2.330
- Soto-Faraco S., Väljamäe A. Multisensory Interactions during Motion Perception // The Neural Bases of Multisensory processes / Eds. M.M. Murray, M.T. Wallace. Boca Raton, London, N.Y.: CRC press, 2012. P. 583–602.
- Spitzer M.W., Semple M.N. Interaural phase coding in auditory midbrain: influence of dynamic stimulus features // Science. 1991. V. 254. № 5032. P. 721–724. https://doi.org/10.1126/science.1948053
- Stekelenburg J.J. & Vroomen J. Neural correlates of audiovisual motion capture // Experimental Brain Research. 2009. V. 198. P. 383–390.
- Teshiba T.M., Ling J., Ruhl D.A. et.al. Evoked and intrinsic asymmetries during auditory attention: implications for the contralateral and neglect models of functioning // Cereb. Cortex. 2013. V. 23. № 3. P. 560–569. https://doi.org/ 10.1093/cercor/bhs039
- Tiitinen H., Salminen N.H., Palomäki K. et.al. Neuromagnetic recordings reveal the temporal dynamics of auditory spatial processing in the human cortex // Neurosci. Lett. 2006. V. 396. P. 17–22. https://doi.org/10.1016/j.neulet.2005.11.018
- Toronchuk J.M., Stumpf E., Cynader M.S. Auditory cortex neurons sensitive to correlates of auditory motion: underlying mechanisms // Experimental Brain Research. 1992. V. 88. P. 169–180. https://doi.org/10.1007/BF02259138
- Vroomen J., de Gelder B. Visual motion influences the contingent auditory motion aftereffect // Psychol. Sci. 2003. V. 14. № 4. P. 357–361. https://doi.org/10.1111/1467-9280.24431
- Warren J.D., Griffiths T.D. Distinct mechanisms for processing spatial sequences and pitch sequences in the human auditory brain // J. Neuroscience. 2003. V. 23. № 13. P. 5799–5804. https://doi.org/10.1523/JNEUROSCI.23-13-05799.2003
- Warren J.D., Zielinski B.A., Green G.G., Rauschecker J.P., Griffiths T.D. Perception of sound-source motion by the human brain // Neuron. 2002. V. 34. № 1. P. 139–148. https://doi.org/10.1016/s0896-6273(02)00637-2
- Weisz N., Obleser J. Synchronisation signatures in the listening brain: a perspective from non-invasive neuroelectrophysiology // Hear. Res. 2014. V. 307. P. 16–28. http://doi.org/10.1016/j.heares.2013.07.009
- Xiang J., Chuang S., Wilson D. et.al. Sound motion evoked magnetic fields // Electroencephalography and Clinical Neurophysiology. 2002. V. 113. P. 1–9. https://doi.org/10.1016/s1388-2457(01)00709-x
- Zatorre R.J., Mondor T.A., Evans A.C. Auditory attention to space and frequency activates similar cerebral systems // NeuroImage. 1999. V. 10. № 5. P. 544–554. https://doi.org/10.1006/nimg.1999.0491
- Zatorre R.J., Bouffard M., Ahad P., Belin P. Where is ‘where’ in the human auditory cortex? // Nat. Neurosci. 2002. V. 5. № 9. P. 905–909. https://doi.org/10.1038/nn904
- Zoefel B., ten Oever S., Sack A.T. The Involvement of Endogenous Neural Oscillations in the Processing of Rhythmic Input: More Than a Regular Repetition of Evoked Neural Responses // Front. Neurosci. 2018. V. 12. № 95. https://doi.org/10.3389/fnins.2018.00095
Supplementary files
