Axisymmetric waves in a water-like cylinder

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The results of an analytical study of the propagation of axisymmetric normal waves in a solid circular waveguide made of a water-like medium are presented. A water-like medium is a medium in which the velocity of shear waves is significantly lower than the velocity of longitudinal waves. It is shown that the propagation velocities of normal waves are approximately equal to the propagation velocities in a liquid cylinder. This result is radically different from the common statement in the literature that the propagation velocities of normal waves at high frequencies are approximately equal to the velocity of a Rayleigh wave at a flat boundary. The correction to the water-like approximation is calculated, and the contributions of the longitudinal and shear components of the fields for normal waves are obtained. An experimental illustration is provided confirming the results obtained.

Full Text

Restricted Access

About the authors

M. A. Mironov

Andreev Acoustics Institute

Author for correspondence.
Email: mironov_ma@mail.ru
Russian Federation, 4 Shvernik str., Moscow, 117292

P. A. Pyatakov

Andreev Acoustics Institute

Email: mironov_ma@mail.ru
Russian Federation, 4 Shvernik str., Moscow, 117292

O. A. Savitsky

Andreev Acoustics Institute

Email: mironov_ma@mail.ru
Russian Federation, 4 Shvernik str., Moscow, 117292

S. A. Shulyapov

Andreev Acoustics Institute

Email: mironov_ma@mail.ru
Russian Federation, 4 Shvernik str., Moscow, 117292

References

  1. Pochhammer L. Uber die Fortpflanzungsgeschwindigkeiten kleiner Schwingungen in einem unbegrenzten isotropen Kreiscylinder // J. Reine Angew. Math. 1876. V. 81. P. 324–336.
  2. Chree C. Longitudinal vibrations of a circular bar // Quart. J. Pure Appl. Math. 1886. V. 21. P. 287–298.
  3. Chree C. The equations of an isotropic elastic solid in polar and cylindrical coordinates, their solutions and applications // Trans. Cambridge Philos. Soc. 1889. V. 14. P. 250–309.
  4. Redwood M. and Lamb J. On propagation of high frequency compressional waves in isotropic cylinders // Proc. Phys. Soc. London. 1957. V. B70. P. 136–143.
  5. Вовк А.Е., Гудков В.В. Нормальные продольные волны в упругом цилиндрическом волноводе // Акуст. журн. 1967. Т. 13. № 3. С. 345–351.
  6. Zemanek J. An Experimental and Theoretical Investigation of Elastic Wave Propagation in a Cylinder // J. Acoust. Soc. Am. 1972. V. 51. P. 265. https://doi.org/10.1121/1.1912838
  7. Meleshko V.V., Bondarenko A.A., Dovgiy S.A., Trofimchuk A.N., and van Heijst G.J.F. Elastic waveguides: history and the state of the art // J. Mathematical Sciences. 2009. V. 162. № 1. P. 99–120.
  8. Valsamos G., Casadei F., Solomos G. A numerical study of wave dispersion curves in cylindrical rods with circular cross-section // Applied and Computational Mechanics. 2013. V. 7. P. 99–114.
  9. Кузнецов С.В., Ильяшенко А.В. Поляризация волн Похгаммера–Кри: аксиально симметричные продольные моды // Акуст. журн. 2018. Т. 64. № 6. С. 657–663.
  10. Гаджибеков Т.А., Ильяшенко А.В. Теоретические аспекты применения волн Похгаммера–Кри к задачам определения динамического коэффициента Пуассона // Известия Рос. Акад. наук. Механика твердого тела. 2021. № 5. С. 113–126.
  11. Мокряков В.В. Напряжения в осесимметричной волне Похгаммера–Кри средневолнового диапазона // Акуст. журн. 2022. Т. 68. № 3. С. 240–248.
  12. Ilyashenko A.V., Kuznetsov S.V. Longitudinal Pochhammer–Chree waves in mild auxetics and non-auxetics // J. of Mechanics. 2019. V. 35. No 3. P. 327. https://doi.org/10.1017/jmech.2018.13
  13. Ramzi Othman. Wave dispersion analysis in auxetic rods // Int. J. Solids and Structures. 2022. V. 236–237. 111321. https://doi.org/10.1016/j.ijsolstr.2021.111321
  14. Исакович М.А. Общая акустика. М.: Наука, 1973. 496 с.
  15. Motta P.H., Roland C.M., Corsaro R.D. Acoustic and dynamic mechanical properties of a polyurethane rubber // J. Acoust. Soc. Am. 2002. V. 111. No 4. P. 1782–1790.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Circular elastic cylinder with a coordinate system

Download (280KB)
3. Fig. 2. Phase (1, 3, 5, 7) and group (1’, 3’, 5’, 7’) velocities of axisymmetric waves in a liquid cylinder for the 1st, 3rd, 5th, 7th modes. The normalized frequency is plotted along the abscissa axis, and the normalized propagation velocities with normalization to the propagation velocity of longitudinal waves are plotted along the ordinate axis.

Download (384KB)
4. Fig. 3. The modulus of the correction to the radial wave number for the 1st (1), 3rd (2) and 5th (3) eigenwaves as a function of frequency. The ratio of the longitudinal velocity to the transverse velocity S is 10. A loss factor of 0.02 is introduced.

Download (572KB)
5. Fig. 4. Asymptotics of the radial wave number correction modulus calculated using formula (13). From top to bottom S = 5, 10, 20. The loss coefficient is 0.01.

Download (372KB)
6. Fig. 5. The first mode, one and a half frequency, S = 5 and S = 10. 1 — Potential part of the field; 2 (S = 5), 3 (S = 10) — vortex part of the field

Download (487KB)
7. Fig. 6. The third mode, double frequency. 1 — Potential part of the field; 2 (S = 5), 3 (S = 10) — vortex part of the field

Download (456KB)
8. Fig. 7. The fourth mode, double frequency. 1 — Potential part of the field; 2 (S = 5), 3 (S = 10) — vortex part of the field

Download (391KB)
9. Fig. 8. The seventh mode, double frequency. 1 — Potential part of the field, losses 0.0002; 2 (S = 5), 3 (S = 10) — vortex part of the field

Download (469KB)
10. Fig. 9. Cylinder in the air. 1 — Electrical pickup signal, 2 — signal of the pulse passed through the cylinder.

Download (304KB)
11. Fig. 10. Cylinder in water. 1 — Electrical pickup signal, 2 — signal of the pulse passed through the cylinder

Download (299KB)

Copyright (c) 2025 The Russian Academy of Sciences