Comparative phylogeography of vicariant species of the Daphnia longispina s.lat. complex (Crustacea: Cladocera) in North Eurasia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This study presents new data on population-genetic polymorphism, phylogeny and phylogeography of two vicariant species belonging to the Daphnia longispina s.lat. complex (Crustacea: Cladocera) in northern Eurasia, D. longispina s.str. and D. dentifera. Based on the variability of the fragments of non-coding 12S rRNA and the protein coding ND2 genes of mitochondrial DNA, the demographic processes that took place in populations of this vast region have been reconstructed. The previously suggested hypothesis about the different demographic history of the “Siberian” and “European” D. longispina s.str. clades has not been confirmed, since we first revealed a deep mitochondrial divergence within the “Siberian” clade. Moreover, a new divergent lineage of D. longispina s.str. in Siberia has been identified. Nevertheless, the phylogeographic patterns of D. longispina s.str. and D. dentifera in northern Eurasia confirm the earlier conclusion that repeated, combined effects on their populations of dispersion and vicariate events occurred in different phases of the Pleistocene.

Full Text

Restricted Access

About the authors

E. I. Zuykova

Institute of Systematics and Ecology of Animals of the Siberian Branch of Russian Academy of Sciences; Saint Petersburg branch of the Federal State Budget Scientific Institution “Russian Federal Research Institute of Fisheries and oceanography”

Author for correspondence.
Email: zuykova1064@yandex.ru
Russian Federation, Novosibirsk; Saint Petersburg

L. P. Sleptzova

Institute of Systematics and Ecology of Animals of the Siberian Branch of Russian Academy of Sciences

Email: zuykova1064@yandex.ru
Russian Federation, Novosibirsk

N. A. Bochkarev

Institute of Systematics and Ecology of Animals of the Siberian Branch of Russian Academy of Sciences; Saint Petersburg branch of the Federal State Budget Scientific Institution “Russian Federal Research Institute of Fisheries and oceanography”

Email: zuykova1064@yandex.ru
Russian Federation, Novosibirsk; Saint Petersburg

E. S. Zakharov

Federal State Autonomus Education Institute of Higher Education "M.K. Ammosov North-Eastern Federal University"

Email: zuykova1064@yandex.ru
Russian Federation, Yakutsk

N. N. Zakharova

Federal State Autonomus Education Institute of Higher Education "M.K. Ammosov North-Eastern Federal University"

Email: zuykova1064@yandex.ru
Russian Federation, Yakutsk

A. A. Kotov

A. N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences

Email: zuykova1064@yandex.ru
Russian Federation, Moscow

References

  1. Аржанников С.Г., Алексеев С.В., Глызин А.В. и др. 2000. Природная обстановка в Голоцене в западной части Тоджинской впадины на примере разреза Мерзлый Яр // Проблемы реконструкции климата и природной среды голоцена и плейстоцена Сибири. Новосибирск: Изд-во Ин-та археологии и этнографии СО РАН. Вып. 2. С. 18.
  2. Гречко В.В. 2013. Проблемы молекулярной филогенетики на примере отряда чешуйчатых рептилий (отряд Squamata): митохондриальные ДНК-маркеры // Мол. биол. Т. 47(1). С. 61.
  3. Картавцев Ю.Ф. 2013. Генетическая дивергенция видов и других таксонов. Географическое видообразование и генетическая парадигма неодарвинизма в действии // Успехи соврем. биол. Т. 133(5). С. 419.
  4. Adamowicz S.J., Petrusek A., Colbourne J.K. et al. 2009. The scale of divergence: a phylogenetic appraisal of intercontinental allopatric speciation in a passively dispersed freshwater zooplankton genus // Mol. Phyl. Evol. V. 50. P. 423.
  5. Avise J.C. 2000. Phylogeography. The history and formation of species. Cambridge: Harvard Univ. Press.
  6. Avise J.C., Arnold J., Ball R.M. et al. 1987. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics // Annual. Rev. Ecol. Syst. V. 18. P. 489.
  7. Bandelt H., Forster P., Röhl A. 1999. Median-joining networks for inferring intraspecific phylogenies // Mol. Biol. Evol. V. 16. P. 37.
  8. Belyaeva M., Taylor D.J. 2009. Cryptic species within the Chydorus sphaericus species complex (Crustacea: Cladocera) revealed by molecular markers and sexual stage morphology // Mol. Phyl. Evol. V. 50. P. 534.
  9. Benzie J.A.H. 2005. The genus Daphnia (including Daphniopsis) (Anomopoda: Daphniidae). Guides to the identification of the microinvertebrates of the continental waters of the world 21. Leiden: Ghent & Backhuys Publ.
  10. Crease T.J., Omilian A.R., Costanzo K.S. et al. 2012. Transcontinental phylogeography of the Daphnia pulex species complex // PLoS ONE. V. 7. № e46620. https://doi.org/10.1371/journal.pone.0046620
  11. Cornetti L., Fields P.D., Van Damme K. et al. 2019. A fossil-calibrated phylogenomic analysis of Daphnia and the Daphniidae // Mol. Phyl. Evol. V. 137. P. 250. https://doi.org/10.1016/j.ympev.2019.05.018
  12. Darriba D., Taboada G.L., Doallo R. et al. 2012. jModelTest 2: more models, new heuristics and parallel computing // Nature Meth. V. 9. № 772.
  13. De Gelas K., De Meester L. 2005. Phylogeography of Daphnia magna in Europe // Mol. Ecol. V. 1. P. 753. https://doi.org/10.1111/j.1365-294X.2004.02434.x
  14. De Meester L., Gómez A., Okamura B. et al. 2002. The Monopolization hypothesis and the dispersal-gene flow paradox in aquatic organisms // Acta Oecol. V. 23. P. 121.
  15. De Salle R., Freedman T., Prager E.M. et al. 1987. Tempo and mode of sequence evolution in mitochondrial DNA of Hawaiian Drosophila // J. Mol. Evol. V. 26. P. 157.
  16. Excoffier L. 2004. Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-island model // Mol. Ecol. V. 3. P. 853.
  17. Excoffier L., Lischer H.E.L. 2010. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows // Mol. Ecol. Res. V. 10. P. 564.
  18. Figuerola J., Green A.J. 2002. Dispersal of aquatic organisms by water birds: a review of past research and priorities for future studies // Freshwater Biol. V. 47. P. 483. https://doi.org/10.1046/j.1365-2427.2002.00829.x
  19. Figuerola J., Green A.J., Michot T.C. 2005. Invertebrate eggs can fly: evidence of Waterfowl-mediated gene flow in aquatic invertebrates // Amer. Nat. V. 165. P. 274. https://doi.org/10.1086/427092
  20. Frey D.G. 1987. The non-cosmopolitanism of chydorid Cladocera: implications for biogeography and evolution // Crustacean Iss. V. 4. P. 237.
  21. Fu Y.X. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection // Genetics. V. 147. P. 915.
  22. Garrigan D., Lewontin R., Wakeley J. 2010. Measuring the sensitivity of single-locus “neutrality tests” using a direct perturbation approach // Mol. Biol. Evol. V. 27. P. 73. https://doi.org/10.1093/molbev/msp209
  23. Grant W.A.S., Bowen B.W. 1998. Shallow population histories in deep evolutionary lineages of marine fishes: Insights from sardines and anchovies and lessons for conservation // J. Heredity. V. 89. P. 415. https://doi.org/10.1093/jhered/89.5.415
  24. Grant W.S. 2015. Problems and cautions with sequence mismatch analysis and Bayesian Skyline Plots to infer historical demography // J. Heredity. V. 106. P. 333.
  25. Grosswald M.G., Kotlyakov V.M. 1989. Great preglacial drainage system Northern Asia and its importance for interregional correlations // Quaternary period. Paleography and lithology. Kishinev: Shtiinitsa. P. 5.
  26. Guindon S., Gascuel O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood // System. Biol. V. 52. P. 696.
  27. Hall T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT // Nucl. Acids. Symp. Ser. V. 41. P. 95.
  28. Hamrová, E., Mergeay J., Petrusek A. 2011. Strong differences in the clonal variation of twoDaphnia species from mountain lakes affected by overwintering strategy // BMC Evol. Biol. V. 11. № 231. https://doi.org/10.1186/1471-2148-11-231
  29. Harpending H. 1994. Signature of ancient population growth in a low resolution mitochondrial DNA mismatch distribution // Hum. Biol. V. 66. P. 591.
  30. Havel J.E., Shurin J.B. 2004. Mechanisms, effects, and scales of dispersal in freshwater zooplankton // Limnol. Oceanogr. V. 49. P. 1229. https://doi.org/10.4319/lo.2004.49.4_part_2.1229
  31. Hebert P.D.N., Cywinska A., Ball S.L. et al. 2003. Biological identifications through DNA barcodes // Proc. Roy. Soc. B: Biol. Sci. V. 270. P. 313. https://doi.org/10.1098/rspb.2002.2218
  32. Hebert P.D.N., Wilson C.C. 1994. Provincialism in plankton: endemism and allopatric speciation in Australian Daphnia // Evolution. V. 48. P. 1333. https://doi.org/10.1111/j.1558-5646.1994.tb05317.x
  33. Hewitt G.M. 2000. The genetic legacy of the Quaternary ice ages // Nature. V. 405. P. 907.
  34. Ho S.Y.W., Phillips M.J., Cooper A. et al. 2005. Time dependency of molecular rate estimates and systematic overestimation of recent divergence times // Mol. Biol. Evol. V. 22. P. 1561. https://doi.org/10.1093/molbev/msi145
  35. Holsinger K.E. 2015. Lecture notes in population genetics. Department of Ecology and Evolutionary Biology. U-3043. University of Connecticut Storrs. https://doi.org/10.6084/M9.FIGSHARE.100687
  36. Huang X., Shi X., Kotov A.A. et al. 2014. Confirmation through genetic analysis of the existence of many local phyloclades of the genus Simocephalus (Crustacea, Cladocera) in China // PLoS ONE. V. 9. № e112808. https://doi.org/10.1371/journal.pone.0112808
  37. Ishida S., Taylor D.J. 2007. Quaternary diversification in a sexual Holarctic zooplankter, Daphnia galeata // Mol. Ecol. V. 16. P. 569. https://doi.org/10.1111/j.1365-294X.2006.03160.x
  38. Jeffery N.W., Elias-Gutierrez M., Adamowicz S.J. 2011. Species diversity and phylogeographical affinities of the Branchiopoda (Crustacea) of Churchill, Manitoba, Canada // PLoS ONE. V. 11. № e18364.
  39. Katoh K., Rozewicki J., Yamada K.D. 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization // Brief. Bioinform. V. 20(4). P. 1160. https://doi.org/10.1093/bib/bbx108
  40. Karabanov D.P., Bekker E.I., Shiel R.J. et al. 2018. Invasion of a Holarctic planktonic cladoceran Daphnia galeata Sars (Crustacea: Cladocera) in the Lower Lakes of South Australia // Zootaxa. V. 4402. P. 136. https://doi.org/10.11646/zootaxa.4402.1.6
  41. Knowles L.L., Maddison W.P. 2002. Statistical phylogeography // Mol. Ecol. V. 11(12). P. 2623.
  42. Kotov A.A. Taylor D.J. 2019. Contrasting endemism in pond–dwelling cyclic parthenogens: the Daphnia curvirostris species group (Crustacea: Cladocera) /// Sci. Rep. V. 9. № 6812. https://doi.org/10.1038/s41598-019-43281-9
  43. Kotov A.A., Garibian P.G., Bekker E.I. et al. 2021. A new species group from the Daphnia curvirostris species complex (Cladocera: Anomopoda) from the eastern Palaearctic: taxonomy, phylogeny and phylogeography // Zool. J. Linn. Soc. V. 191. P. 772.
  44. Kumar S., Stecher G., Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets // Mol. Biol. Evol. V. 33. P. 1870.
  45. Leigh J.W., Bryant D. 2015. PopART: Full-feature software for haplotype network construction // Methods Ecol. Evol. V. 6. P. 1110.
  46. Librado P., Rozas J. 2009. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data // Bioinformatics. V. 25. P. 1451.
  47. Louette G., De Meester L. 2005. High dispersal capacity of cladoceran zooplankton in newly founded communities // Ecology. V. 86. P. 353.
  48. Lynch M. 2010. Evolution of the mutation rate // Trends Genet. V. 26. P. 345. https://doi.org/10.1016/j.tig.2010.05.003
  49. Ma X., Petrusek A., Wolinska J. et al. 2014. Diversity of the Daphnia longispina species complex in Chinese lakes: a DNA taxonomy approach // J. Plank. Res. V. 37. P. 56. https://doi.org/10.1093/plankt/fbu091
  50. Minh B.Q., Nguyen M.A.T., von Haeseler A. 2013. Ultrafast approximation for phylogenetic bootstrap // Mol. Biol. Evol. V. 30. P. 1188. https://doi.org/10.1093/molbev/mst024
  51. Nei M., Kumar S. 2000. Molecular Evolution and Phylogenetics. N.Y.: Oxford Univ. Press. P. 333.
  52. Nguyen L.-T., Schmidt H.A., von Haeseler A. et al. 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies // Mol. Biol. Evol. V. 32. P. 268. https://doi.org/10.1093/molbev/msu300
  53. Penton E.H., Crease T.J. 2004. Evolution of the transposable element Pokey in the ribosomal DNA of species in the subgenus Daphnia (Crustacea: Cladocera) // Mol. Biol. Evol. V. 21. P. 1727.
  54. Petrusek A., Thielsch A., Schwenk K. 2012. Mitochondrial sequence variation suggests extensive cryptic diversity within the Western Palearctic Daphnia longispina complex // Limnol., Oceanogr. V. 57. P. 1838.
  55. Rambaut A., Drummond A.J., Xie D. et al. 2018. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7 // Syst. Biol. V. 67. P. 901. https://doi.org/10.1093/sysbio/syy032
  56. Ray N., Currat M., Excoffier L. 2003. Intra-deme molecular diversity in spatially expanding populations // Mol. Biol. Evol. V. 20. P. 76.
  57. Rogers A.R., Harpending H. 1992. Population growth makes waves in the distribution of pairwise genetic differences // Mol. Biol. Evol. V. 9. P. 552.
  58. Rogers A.R., Fraley A.E., Bamshad M.J. et al. 1996. Mitochondrial mismatch analysis is insensitive to mutational process // Mol. Biol. Evol. V. 17. P. 895. https://doi.org/10.1093/molbev/13.7.895
  59. Ronquist F., Huelsenbeck J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models // Bioinformatics. V. 19. P. 1572.
  60. Rosenberg N.A., Nordborg M. 2002. Genealogical trees, coalescent theory and the analysis of genetic polymorphisms // Nat. Rev. Genet. V. 3. P. 380. https://doi.org/10.1038/nrg795
  61. Saitou N., Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees // Mol. Biol. Evol. V. 4. P. 6.
  62. Schenekar T. Weiss S. 2011. High rate of calculation errors in mismatch distribution analysis results in numerous false inferences of biological importance // Heredity. V. 107. P. 511. https://doi.org/10.1038/hdy.2011.48
  63. Schneider S., Excoffier L. 1999. Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA // Genetics. V. 152. P. 1079.
  64. Slatkin M., Hudson R. 1991. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations // Genetics. V. 129. P. 555.
  65. Tajima F. 1989. Statistical methods for testing the neutral mutation hypothesis by DNA polymorphism // Genetics. V. 123. P. 585.
  66. Taylor D.J., Hebert P.D., Colbourne J.K. 1996. Phylogenetics and evolution of the Daphnia longispina group (Crustacea) based on 12S rDNA sequence and allozyme variation // Mol. Phyl. Evol. V. 5. P. 495.
  67. Taylor D.J., Finston T.L., Hebert P.D.N. 1998. Biogeography of a widespread freshwater crustacean: pseudocongruence and cryptic endemism in the North American Daphnia laevis complex // Evolution. V. 52. P. 1648.
  68. Templeton A.R. 1998. Nested clade analysis of phylogeographic data: testing hypotheses about gene flow and population history // Mol. Ecol. V. 7. P. 381.
  69. Thielsch A., Brede N., Petrusek A. et al. 2009. Contribution of cyclic parthenogenesis and colonization history to population structure in Daphnia // Mol. Ecol. V. 18. V. 1616.
  70. Trifinopoulos J., Nguyen L.T., von Haeseler A. et al. 2016. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis // Nucleic Acids Res. V. 44. P. 232. https://doi.org/10.1093/nar/gkw256
  71. Van de Meutter F., Stoks R. et al. 2008. Size-selective dispersal of Daphnia resting eggs by backswimmers (Notonecta maculata) // Biol. Lett. V. 4. P. 494. https://doi.org/10.1098/rsbl.2008.0323
  72. Ventura M., Petrusek A., Miró A. et al. 2014. Local and regional founder effects in lake zooplankton persist after thousands of years despite high dispersal potential // Mol. Ecol. V. 23. P. 1014. https://doi.org/10.1111/mec.12656
  73. Vysotskiy E.M. 2001. Geomorphology of the basin of Teletskoe Lake // Physical and geological environment of Lake Teletskoe. Tervuren: Musee Royal de I Afrigue Centrale Tervuren. P. 164.
  74. Zuykova E.I., Bochkarev N.A., Katokhin A.V. 2013a. Molecular-genetic diagnosis and phylogeny of Daphnia species in water bodies of the Chany Lake basin // Rus. J. Genetics. V. 49. P. 206.
  75. Zuykova E.I., Bochkarev N.A., Katokhin A.V. 2013b. Identification of the Daphnia species (Crustacea: Cladocera) in the lakes of the Ob and Yenisei River basins: morphological and molecular phylogenetic approaches // Hydrobiologia. V. 715. P. 135.
  76. Zuykova E.I., Simonov E.P., Bochkarev N.A. 2017. Comparative morphological and genetic analysis of populations and species of the genus Daphnia O.F. Müller, 1785 (Crustacea; Daphniidae) from Lake Glubokoe and Lake Chany // Biol. Bull. V. 44. P. 277. https://doi.org/10.1134/S106235901703013X
  77. Zuykova E.I., Simonov E.P., Bochkarev N.A. et al. 2018a. Contrasting phylogeographic patterns in closely related species of Daphnia longispina group (Crustacea: Cladocera) with focus on north-eastern Eurasia // PLoS ONE. V. 13. № 11. № e0207347.
  78. Zuykova E.I., Simonov E.P., Bochkarev N.A. et al. 2018b. Resolution of the Daphnia umbra problem (Crustacea: Cladocera) using an integrated taxonomic approach // Zool. J. Linn. Soc. V. 184. P. 969.
  79. Zuykova E.I., Bochkarev N.A., Talor D.J. et al. 2019. Unexpected endemism in the Daphnia longispina complex (Crustacea: Cladocera) in Southern Siberia // PLoS ONE. V. 14. № e0221527.
  80. Zuykova E.I., Bochkarev N.A., Kotov A.A. 2021. Specific and genetic structure of the Daphnia longispina s. l. complex (Cladocera, Daphniidae) in water bodies of Southern Siberia // Biol. Bull. V. 48. P. 880.
  81. Zuykova E.I., Sleptzova L.P., Bochkarev N.A. et al. 2022. Mitochondrial lineage diversity and phylogeography of Daphnia (Daphnia) (Crustacea: Cladocera) in North-East Russia // Water. V. 14. № 1946. https://doi.org/10.3390/w14121946

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Additional materials
Download (1MB)
3. Fig. 1. ML phylogenetic tree for D. longispina s.str. and D. dentifera based on the combined fragments of the 12S and ND2 genes of mitochondrial DNA. Bootstrap branch support values ​​greater than 70% are shown. Newly obtained nucleotide sequences are marked with an asterisk; color fill indicates a new lineage of D. longispina s.str. Scale bar is the number of expected substitutions per site. YAK – Yakutia; BAI – Lake Baikal basin; Y_KR – Krasnoyarsk krai; TOD – Todzhinskaya depression; DOD – Lake Dodot; AR – Altai Republic; ART – Lake Teletskoye; OB – Altai krai; ZDV – village of Zdvinsk (Novosibirsk oblast); BRB – city of Barabinsk (Novosibirsk oblast).

Download (629KB)
4. Fig. 2. Graphs of matrices of pairwise FST distances between populations of D. longispina s.str. (a – 12S; b – ND2) and D. dentifera (c – 12S; d – ND2). Abbreviations as in Fig. 1. Additionally, for D. longispina s.str.: EVEN – Evenkia; KHA – Khakassia; Republic of Tuva (central part); MONG – Mongolia; YAMN – Yamalo-Nenets Autonomous Okrug; TYU – Tyumen region; UR – Urals; for D. dentifera: KAM – Kamchatka; YAK – Yakutia, Churapchinsky ulus; YAKOIM – Yakutia, Oymyakonsky ulus; BAISK – Lake Sredneye Kedrovoe (Lake Baikal basin); BAISM – Lake. Sagan Moryan (Lake Baikal basin).

Download (468KB)
5. Fig. 3. Graphs of the haplotype frequency distribution (MMD) for the spatial distribution model of Siberian populations of D. longispina s.str. (a, b) and D. dentifera (c, d) based on fragments of the 12S (a, c) and ND2 (b, d) genes of mitochondrial DNA. 1 – observed distribution; 2 – expected distribution; 3 – 95% confidence interval.

Download (403KB)
6. Fig. 4. Median joint (MJ) of 12S haplotypes of D. longispina s.str. (a) and their geographic distribution: b – “Siberian” clade, c – “European” clade. Abbreviations as in Figs. 1 and 2; YAK1 – Yakutia, Churapchinsky ulus, YAK2 – Yakutia, Nyurba ulus. The size of the circles corresponds to the relative frequency of haplotypes; small black circles are median vectors; the number of mutations is indicated for each branch if it is ≠1.

Download (1MB)
7. Fig. 5. Median joint (MJ) of ND2 haplotypes of D. longispina s.str. (a) and their geographic distribution (b). Abbreviations as in Fig. 2 and Fig. 4.

Download (781KB)
8. Fig. 6. Median network (MJ, a) of 12S haplotypes of D. dentifera (a) and their geographic distribution (b). Abbreviations as in Fig. 2 and Fig. 4; KUZ – Lake Kuznechikha (Lake Baikal basin).

Download (866KB)
9. Fig. 7. Median joint (MJ) of ND2 haplotypes of D. dentifera (a) and their geographic distribution (b). Abbreviations as in Fig. 2 and Fig. 6.

Download (770KB)

Copyright (c) 2024 The Russian Academy of Sciences