Ecophysiology of extremophilic diatom alga Nitzschia cf. thermaloides from mud volcanoes of Crimea

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The diatom alga Nitzschia cf. thermaloides can be found in large numbers in puddles and lakes in the places where mud volcanoes function in the area of the Bulganak mud volcano field (eastern Crimea). Environmental conditions in such reservoirs are extreme: salinity is from 18 to ≥70‰, insolation is extremely high, and ultraviolet radiation is very strong. The growth rate and the intensity of sexual reproduction of N. cf. thermaloides at different salinity and illumination levels have been studied in laboratory conditions. We have determined the limits of halotolerance and the optima of salinity and illumination for growth and sexual reproduction of the alga, capable of vegetative reproduction in an environment with salinity from 0 to 220‰. The range for sexual reproduction is narrower, from 6 to 54‰. The salinity of 22–25‰ and illumination of about 1.5 klx are optimal for both vegetative and sexual reproduction of N. cf. thermaloides.

Full Text

Restricted Access

About the authors

O. I. Davidovich

Vyazemsky Karadag Scientific Station–Nature Reserve, Russian Academy of Sciences, Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences

Email: nickolaid@yandex.ru
Russian Federation, Feodosiya

N. A. Davidovich

Vyazemsky Karadag Scientific Station–Nature Reserve, Russian Academy of Sciences, Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences

Author for correspondence.
Email: nickolaid@yandex.ru
Russian Federation, Feodosiya

Yu. A. Podunay

Vyazemsky Karadag Scientific Station–Nature Reserve, Russian Academy of Sciences, Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences

Email: nickolaid@yandex.ru
Russian Federation, Feodosiya

N. A. Martynenko

Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences

Email: nickolaid@yandex.ru
Russian Federation, Moscow

References

  1. Зайцев Г.Н. 1984. Математическая статистика в экспериментальной ботанике. М.: Наука.
  2. Полякова С.Л., Давидович О.И., Подунай Ю.А., Давидович Н.А. 2018. Модификация среды ESAW, используемой для культивирования морских диатомовых водорослей // Морской биол. журн. Т. 3. № 2. С. 73. удалено для уменьшения самоцитирования
  3. Полякова С.Л., Давидович Н.А., Стоник И.В. и др. 2022. Репродуктивная совместимость и токсикогенная активность диатомовой водоросли Pseudo-nitzschia calliantha Lundholm, Moestrup & Hasle из трех географически удаленных популяций // Физиология растений. Т. 69. № 5. С. 480. https://doi.org/10.31857/S0015330322050177
  4. Финенко З.З., Ланская Л.А. 1971. Рост и скорость деления водорослей в лимитированных объемах воды // Экологическая физиология морских планктонных водорослей (в условиях культур). Киев: Наук. думка. C. 22.
  5. Цой И.Б., Емельянова Э.А. 2021. Атлас диатомовых водорослей Дагинского грязевого вулкана (Восточный Сахалин). Владивосток: ТОИ ДВО РАН.
  6. Andersen, R.A., Berges, J.A., Harrison, P.J., Watanabe, M.M. 2005. Recipes for freshwater and seawater media // Algal Culturing Techniques. N.Y.: Elsevier Acad. Press.
  7. Andersen, R.A., Kawachi, M. 2005. Traditional microalgae isolation techniques // Algal Culturing Techniques. N.Y.: Elsevier Acad. Press.
  8. Davidovich N.A., Davidovich O.I., Podunay Yu.A. 2023. Reproductive biology and the life cycle of the diatom Nitzschia cf. thermaloides inhabiting mud volcanoes of Crimea // Mar. Biol. J. V. 8(2). P. 42. https://doi.org/10.21072/mbj.2023.08.2.03
  9. Davidovich O.I., Davidovich N.A., Podunay Yu.A., Solak C.N. 2022. Halotolerance limits of the Black Sea representative of the genus Entomoneis Ehrenberg, 1845 (Bacillariophyta) // Mar. Biol. J. V. 7(2). P. 32. https://doi.org/10.21072/mbj.2022.07.2.03
  10. Figueroa R.I., Bravo I., Fraga S. et al. 2009. The life history and cell cycle of Kryptoperidinium foliaceum, a dinoflagellate with two eukaryotic nuclei // Protist. V. 160(2). P. 285. https://doi.org/10.1016/j.protis.2008.12.003
  11. Heudre D., Wetzel C.E., Van de Vijver B. et al. 2020. Brackish diatom species (Bacillariophyceae) from rivers of Rhin-Meuse basin in France // Botany Letters. V. 168(1). P. 56. https://doi.org/10.1080/23818107.2020.1738269
  12. Hustedt F. 1955. Marine littoral diatoms of Beaufort, North Carolina. Duke University Marine Station, Bulletin. № 6.
  13. Imanian B., Pombert J.-F., Dorrell R. et al. 2012. Tertiary endosymbiosis in two dinotoms has generated little change in the mitochondrial genomes of their dinoflagellate hosts and diatom endosymbionts // PLOS ONE. V. 7(8). e43763. https://doi.org/10.1371/journal.pone.0043763
  14. Kumar S., Stecher G., Li M. et al., al. MEGA X: Molecular evolutionary genetics analysis across computing platforms // Mol. Biol. Evol. 2018. V. 35. P. 1547. https://doi.org/10.1093/molbev/msy096
  15. Nikulina T.V., Kociolek J.P. 2011. Diatoms from hot springs from Kuril and Sakhalin islands (Far East, Russia) // The Diatom World, Cellular Origin, Life in Extreme Habitats and Astrobiology. Springer Science + Business Media B. V. 19. Р. 333.
  16. Ryabushko L.I., Bondarenko A.V. 2020. Microalgae of mud volcano of the Bulganak sopochnoe field on the Crimean Peninsula // Mar. Biol. J. V. 5(1). P. 64. https://doi.org/10.21072/mbj.2020.05.1.07
  17. Solak C.N., Gastineau R., Lemieux C. et al. 2021. Nitzschia anatoliensis sp. nov., a cryptic diatom species from the highly alkaline Van Lake (Turkey). PeerJ 9: e12220. https://doi.org/10.7717/peerj.12220
  18. Witkowski A., Lange-Bertalot H., Metzeltin D. 2000. Diatom flora of marine coasts. I A.R.G. Ganter Verlag K.G.
  19. Wood A.M., Everroad R.C., Wingard L.M. 2005. Measuring growth rates in microalgal cultures // Algal culturing techniques. N.Y.: Elsevier Acad. Press.
  20. Yamada N., Bolton J., Trobajo R. et al. 2019. Discovery of a kleptoplastic ‘dinotom’ dinoflagellate and the unique nuclear dynamics of converting kleptoplastids to permanent plastids // Scientific Reports. V. 9(1). https://doi.org/10.1038/s41598-019-46852-y

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Diatom alga Nitzschia cf. thermaloides Hustedt: a – parental and first postinitial cells of a new generation, light microscopy, differential interference contrast; b, c – valve and valve fragment from the inside, SEM. Scale: a – 20 µm, b – 10 µm, c – 2 µm.

Download (480KB)
3. Fig. 2. Emission spectrum of ERA LLED-05-T5-FITO-14W-W lamps (China), http://era74.ru/catalog/goods/svetilnik-era-lled-05-t5-fito-14w-w/#prettyPhoto.

Download (204KB)
4. Fig. 3. Phylogenetic tree constructed by the maximum likelihood method based on the comparison of 85 nucleotide sequences of the rbcL gene of chloroplast DNA of different species of the genus Nitzschia. Bootstrap values ​​are shown at nodes supported by >50%. The designations of tree branches indicate species names, strain names, and GenBank numbers (in brackets).

Download (868KB)
5. Fig. 4. The rate of vegetative division of Nitzschia cf. thermaloides placed in an environment with different salinity without preliminary acclimation (a) and the frequency of its sexual reproduction at different salinity of the environment (b).

Download (190KB)
6. Fig. 5. Dependence of the cell division rate (a) and the frequency of sexual reproduction (b) of Nitzschia cf. thermaloides on illumination. I½ is the half-saturation constant, Ik is the light saturation constant, Km is the maximum division rate. Average values ​​and their errors are given.

Download (162KB)

Copyright (c) 2024 The Russian Academy of Sciences